Responsive image
博碩士論文 etd-0810114-174831 詳細資訊
Title page for etd-0810114-174831
論文名稱
Title
高屏河-海輸運系統中「從源到匯」的沈積物動力研究
Sediment dynamics study in the source-to-sink process through the Gaoping river-sea system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-11
繳交日期
Date of Submission
2014-09-11
關鍵字
Keywords
颱風、濁流、沈積動力、沈降顆粒、山棲型小河、海底峽谷、沖淡水
small mountainous river, submarine canyon, hypopycnal plume, typhoon, hyperpycnal turbidity current, sediment dynamics, sinking particles
統計
Statistics
本論文已被瀏覽 5825 次,被下載 428
The thesis/dissertation has been browsed 5825 times, has been downloaded 428 times.
中文摘要
在複雜的板塊運動和氣候的交互作用下,地表形貌隨時間而改變,並產生數量可觀的沈積物,由陸地傳輸到海底,每年約有超過200億噸的輸出到海洋,其中約有70%的河流沈積物由造山運動活躍的南亞進入太平洋和印度洋。此外,山棲型小河沈積物的輸出對海洋沈積物的貢獻一直被低估,因此,有必要透過山棲型小河的沈積動力研究,重新估算此類小河的沈積物入海的收支量。
高屏溪具有全世界第12高的沈積物產率,且與相鄰只有1公里的高屏海底峽谷直接相連,而高屏海底峽谷又切入高屏陸棚與陸坡,匯入下面的馬尼拉海溝後進入南海盆,因此,這是一個研究源到匯之沈積物動力的理想場域。
由於高屏河-海系相當複雜,本論文運用多種不同的研究工具與手段,調查了高屏溪下游河口和沖淡水區的水文及水動力之時空變化;而在峽谷區,則用沈積物收集器搭配温深鹽儀、濁度計、都卜勒流剖儀來研究枯水期、豐水期、以及颱風過後的沈積物動力作用。
調查結果顯示,河川涇流與潮汐的交互作用下,在河口區產生了上層向外而底層向內的兩層式的河口環流,同時,在離河口約1.5 km處,有一個動態的沈積顆粒屏障,是海水入侵最裏的位置。除非是暴洪事件,一般狀況下河川輸出的沈積物會隨沿岸噴射流擴散到沿岸地區沈降下來。在高屏海底峽谷內,細顆粒沈積物通常會懸浮在峽谷底層,形成底霧濁層,此時的懸浮沈積物的傳輸趨勢是往峽谷頭向上輸送;另一種在洪水暴發後產生的高濁度重力流,將陸地上的沈積物透過海底峽谷直接運送到深海去,這種偶發的現象,亦將較輕的暖水帶到深海底。
Abstract
The complex interplay between tectonic and climate activities shapes the Earth’s surface and produces large amounts of sediments conveying from land to the sea. Therefore, more than 20 billion tons of sediments is exported to the ocean each year. There is approximately 70% of the global fluvial sediment discharge from the orogens in southern Asia and high-standing islands fringing the Pacific and Indian Oceans. The contribution by small mountainous rivers (SMR) to the world ocean’s sediment budget in this region, although significant, has often been underestimated. Therefore, the research in the sediment dynamics is necessary for evaluating the sediment budget from SMR to the basin.
The Gaoping River (GPR) has high sediment yield whose ranking is the 12th in the world and connects to the head of the Gaoping Submarine Canyon (GPSC) just 1 km apart. Moreover, the GPSC cuts through the Gaoping shelf and slope and merges into the Manila Trench which eventually links to the South China Sea. Therefore, this dispersal system is an ideal play for studying the dynamics of the source-to sink (S2S) processes.
This dissertation presents field investigations in the GPR estuary, hypopycnal plume area, and GPSC. Because of the complexity of the GPR-GPSC dispersal system, multidiscipline and different approaches were adopt in the different region in the system. In the estuary and the plume area, both temporal and spatial schemes were conducted to measure the hydrodynamic, hydrographic, water samples, and sediment samples. In the GPSC, three sediment trap moorings with CTD, OBS, and ADCP were deployed during the dry, flood season, and after the typhoon, respectively.
In the estuary, the interaction between river flow and tidal oscillation produces two layered circulation which flows downstream in the top-core layer and upstream in the near bed layer. A dynamic sediment barrier was found in the lower reach of the estuary. Except extreme floods, river effluents spread over the coast seawater through the hypopycnal processes. Most effluent sediments transport along the coastal jet and deposit in the coastal or near-shore ocean. In the GPSC, canyons, major sediment transport and rapid sediment deposition occur in the benthic nepheloid layer (BNL). Sediments in the hyperpycnal plume are trapped in the head region of the submarine canyon during the normal condition and flow down the canyon conduit to the deep basin during extreme floods. We also captured the warm water and suspended sediment carried by passing turbidity currents that originated in the adjacent GPR.
目次 Table of Contents
論文審定書 i
摘  要 ii
Abstract iii
誌  謝 v
Contents vi
List of Figures ix
List of Tables xvii
Chapter 1 Introduction 1
1.1 River-sea systems in the source-to-sink perspective 2
1.2 Sediments contribution from small mountainous rivers to the ocean 3
1.3 Aims 4
Chapter 2 Study area and methods 5
2.1 Study areas 5
2.1.1 Fates of Taiwan Rivers 5
2.1.1.1 Influence of Taiwan orogeny 5
2.1.1.2 Influence of monsoon and typhoons 6
2.1.2 The Gaoping River (GPR) 8
2.1.2.1 Geographic settings 8
2.1.2.1 Hydrological characteristics 10
2.1.3 Gaoping Submarine Canyon (GPSC) 12
2.1.3.1 Geological setting 12
2.1.3.2 Geographic and geophysical properties in the GPSC 14
2.2 Innovative techniques 15
2.2.1 Estimation of floc density and porosity 15
2.2.1.1 Floc porosity (n) estimation 17
2.2.1.2 Bulk floc density (ρF) estimation 18
2.2.1.3 Necessary for on-board filtration 18
2.2.1.4 Suggestions for further application 19
2.2.2 Modification of Sediment traps 20
2.2.2.1 Problems for fixed-volume type sediment trap 20
2.2.2.2 Advantages of the Non sequential sediment traps (NSST) 21
2.2.2.3 Standard operation procedure (SOP) of the NSSTs’ sediment sampling 23
2.2.2.4 Improvements on the NSST 25
2.2.2.5 Suggestions for future modification 26
2.3 Sampling locations and methods of field studies 28
2.3.1 GPR estuary 28
2.3.2 GPR mouth 29
2.3.3 GPSC 30
2.3.3.1 Sediment trap mooring deployment in the dry season 30
2.3.3.2 Sediment trap mooring deployment in the flood season 32
2.3.3.3 Sediment trap moorings deployment after Typhoon Fanapi 35
Chapter 3 Results 38
3.1 Particle dynamics in the estuary 38
3.1.1 Three layered estuarine circulation 38
3.1.2 Dynamic barrier of the seawater intrusion 39
3.2 River plume dynamics 40
3.2.1 Hypopycnal plume structure of the GPR 40
3.3 Dynamics of settling particles in the GPSC 43
3.3.1 Sinking particle dynamics in the normal condition 43
3.3.1.1 Tidal dominated regime 44
3.3.2 Hyperpycnal turbidity currents (HTC) in the GPSC 46
3.3.2.1 Waxing and waning signatures in the turbidity currents 47
3.3.2.2 Hyperpycnal turbidity currents in the wake of typhoon floods 49
Chapter 4 Discussions 59
4.1 Interplay between the GPR plume and GPSC internal tidal flows 59
4.2 Capturing hyperpycnal turbidity current in the GPSC 65
4.3 The retarded HTC by the internal tidal flow 67
4.4 Estimate the terrestrial fraction carried by the HTC 68
Chapter 5 Conclusions 69
References 70
參考文獻 References
Agrawal, Y.C., Pottsmith, H.C., 2000. Instruments for particle size and settling velocity observations in sediment transport. Mar. Geol. 168, 89–114. doi:10.1016/S0025-3227(00)00044-X
Altinakar, M.S., Graf, W.H., Hopfinger, E.J., 1996. Flow structure in turbidity currents. J. Hydraul. Res. 34, 713–718. doi:10.1080/00221689609498467
Bertrand, E.A., Unsworth, M.J., Chiang, C.-W., Chen, C.-S., Chen, C.-C., Wu, F.T., Türkoğlu, E., Hsu, H.-L., Hill, G.J., 2012. Magnetotelluric imaging beneath the Taiwan orogen: An arc-continent collision. J. Geophys. Res. 117. doi:10.1029/2011JB008688
Carter, L., Milliman, J.D., Talling, P.J., Gavey, R., Wynn, R.B., 2012. Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan. Geophys. Res. Lett. 39, n/a–n/a. doi:10.1029/2012GL051172
Chen, C.-T.A., Liu, J.T., Tsuang, B.-J., 2004. Island-based catchment?The Taiwan example. Reg. Environ. Change 4, 39–48. doi:10.1007/s10113-003-0058-3
Chiang, C.S., Yu, H.S., 2008. Evidence of hyperpycnal flows at the head of the meandering Kaoping Canyon off SW Taiwan. Geo-Mar. Lett. 28, 161–169.
Curran, J.C., 2007. The decrease in shear stress and increase in transport rates subsequent to an increase in sand supply to a gravel-bed channel. Sediment. Geol. 202, 572–580. doi:10.1016/j.sedgeo.2007.03.017
Dadson, S., Hovius, N., Pegg, S., Dade, W.B., Horng, M.J., Chen, H., 2005. Hyperpycnal river flows from an active mountain belt. J. Geophys. Res. 110. doi:10.1029/2004JF000244
Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Lin, J.-C., Hsu, M.-L., Lin, C.-W., Horng, M.-J., Chen, T.-C., Milliman, J., 2004. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 32, 733–736.
Dyer, K.R., Manning, A.J., 1999. Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions. J. Sea Res. 41, 87–95.
Felix, M., 2002. Flow structure of turbidity currents. Sedimentology 49, 397–419.
Fennessy, M.J., Dyer, K.R., Huntley, D.A., 1994. INSSEV: An instrument to measure the size and settling velocity of flocs in situ. Mar. Geol. 117, 107–117.
Fuller, C.W., Willett, S.D., Hovius, N., Slingerland, R., 2003. Erosion Rates for Taiwan Mountain Basins: New Determinations from Suspended Sediment Records and a Stochastic Model of Their Temporal Variation. J. Geol. 111, 71–87. doi:10.1086/344665
Goldsmith, S.T., Carey, A.E., Lyons, W.B., Kao, S.J., Lee, T.Y., Chen, J., 2008. Extreme storm events, landscape denudation, and carbon sequestration: Typhoon Mindulle, Choshui River, Taiwan. Geology 36, 483.
Hilton, R.G., Galy, A., Hovius, N., Chen, M.-C., Horng, M.-J., Chen, H., 2008. Tropical-cyclone-driven erosion of the terrestrial biosphere from mountains. Nat. Geosci. 1, 759–762. doi:10.1038/ngeo333
Hosseini, S.A., Shamsai, A., Ataie-Ashtiani, B., 2006. Synchronous measurements of the velocity and concentration in low density turbidity currents using an Acoustic Doppler Velocimeter. Flow Meas. Instrum. 17, 59–68. doi:10.1016/j.flowmeasinst.2005.05.002
Hsu, R.T., Liu, J.T., 2010. In-situ estimations of the density and porosity of flocs of varying sizes in a submarine canyon. Mar. Geol. 276, 105–109. doi:10.1016/j.margeo.2010.07.003
Hsu, R.T., Liu, J.T., Su, C.-C., Kao, S.-J., Chen, S.-N., Kuo, F.-H., Huang, J.C., 2014. On the links between a river’s hyperpycnal plume and marine benthic nepheloid layer in the wake of a typhoon. Prog. Oceanogr. doi:10.1016/j.pocean.2014.06.001
Hsu, S.-K., Kuo, J., Lo, C.-L., Tsai, C.-H., Doo, W.-B., Ku, C.-Y., Sibuet, J.-C., 2008. Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan. Terr. Atmospheric Ocean. Sci. 19, 767. doi:10.3319/TAO.2008.19.6.767(PT)
Huang, H., Imran, J., Pirmez, C., 2007. Numerical modeling of poorly sorted depositional turbidity currents. J. Geophys. Res. 112. doi:10.1029/2006JC003778
Huang, J.C., 2001. Inferred suspended sediment transport process in the head region of Kao-Ping Submarine Canyon based on temporal and spatial hydrographic observations. National Sun Yat-sen University.
Huang, Peter S., 2012. Small-scale river plume dynamics at the Gaoping River Mouth. National Sun Yat-sen University, Institue of Marine Geology and Chemistry.
Huh, C.-A., Liu, J.T., Lin, H.-L., Xu, J.P., 2009. Tidal and flood signatures of settling particles in the Gaoping submarine canyon (SW Taiwan) revealed from radionuclide and flow measurements. Mar. Geol. 267, 8–17. doi:10.1016/j.margeo.2009.09.001
Hung, J.-J., Shy, C.-P., 1995. Speciation of Dissolved Selenium in the Kaoping and Erhjen Rivers and Estuaries, Southwestern Taiwan. Estuaries 18, 234. doi:10.2307/1352633
Kao, S.J., Dai, M., Selvaraj, K., Zhai, W., Cai, P., Chen, S.N., Yang, J.Y.T., Liu, J.T., Liu, C.C., Syvitski, J.P.M., 2010. Cyclone-driven deep sea injection of freshwater and heat by hyperpycnal flow in the subtropics. Geophys. Res. Lett. 37, L21702.
Kao, S.J., Milliman, J.D., 2008. Water and Sediment Discharge from Small Mountainous Rivers, Taiwan: The Roles of Lithology, Episodic Events, and Human Activities. J. Geol. 116, 431–448. doi:10.1086/590921
Kneller, B., Buckee, C., 2000. The structure and fluid mechanics of turbidity currents: a review of some recent studies and their geological implications. Sedimentology 47, 62–94.
Krone, R.B., 1978. Aggregation of suspended particles in estuaries. In: Kjerfve B. (ed) Estuaries Transport Processes. Univ. S. C. Press Colomb. SC 171–190.
Krone, R.B., 1986. Cohesive sediment properties and transport processes. Sheng HT Ed Front. Hydraul. Eng. 66–78.
Kuo, D.T., 2011. Sinking particle dynamics ih the Gaoping Submarine Canyon. National Sun Yat-sen University, Institue of Marine Geology and Chemistry.
Lee, I.-H., Lien, R.-C., Liu, J.T., Chuang, W., 2009a. Turbulent mixing and internal tides in Gaoping (Kaoping) Submarine Canyon, Taiwan. J. Mar. Syst. 76, 383–396. doi:10.1016/j.jmarsys.2007.08.005
Lee, I.-H., Wang, Y.-H., Liu, J.T., Chuang, W.-S., Xu, J., 2009b. Internal tidal currents in the Gaoping (Kaoping) Submarine Canyon. J. Mar. Syst. 76, 397–404. doi:10.1016/j.jmarsys.2007.12.011
Lin, H.-L., Liu, J.T., Hung, G.-W., 2005. Foraminiferal shells in sediment traps: Implications of biogenic particle transport in the Kao-ping submarine canyon, Taiwan. Cont. Shelf Res. 25, 2261–2272. doi:10.1016/j.csr.2005.09.001
Liu, J.T., Hung, J.-J., Huang, Y.-W., 2009. Partition of suspended and riverbed sediments related to the salt-wedge in the lower reaches of a small mountainous river. Mar. Geol. 264, 152–164. doi:10.1016/j.margeo.2009.05.005
Liu, J.T., Kao, S.-J., Huh, C.-A., Hung, C.-C., 2013. Gravity Flows Associated with Flood Events and Carbon Burial: Taiwan as Instructional Source Area. Annu. Rev. Mar. Sci. 5, 47–68. doi:10.1146/annurev-marine-121211-172307
Liu, J.T., Lin, H., 2004. Sediment dynamics in a submarine canyon: a case of river–sea interaction. Mar. Geol. 207, 55–81. doi:10.1016/j.margeo.2004.03.015
Liu, J.T., Lin, H.-L., Hung, J.-J., 2006. A submarine canyon conduit under typhoon conditions off Southern Taiwan. Deep Sea Res. Part Oceanogr. Res. Pap. 53, 223–240. doi:10.1016/j.dsr.2005.09.012
Liu, J.T., Liu, K., Huang, J.C., 2002. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Mar. Geol. 181, 357–386.
Liu, J.T., Wang, Y.H., Lee, I.-H., Hsu, R.T., 2010. Quantifying tidal signatures of the benthic nepheloid layer in Gaoping Submarine Canyon in Southern Taiwan. Mar. Geol. 271, 119–130. doi:10.1016/j.margeo.2010.01.016
Liu, J.T., Wang, Y.-H., Yang, R.J., Hsu, R.T., Kao, S.-J., Lin, H.-L., Kuo, F.H., 2012. Cyclone-induced hyperpycnal turbidity currents in a submarine canyon. J. Geophys. Res. Oceans 117, C04033. doi:10.1029/2011JC007630
Lyons, W.B., Nezat, C.A., Carey, A.E., Hicks, D.M., 2002. Organic carbon fluxes to the ocean from high-standing islands. Geology 30, 443–446. doi:10.1130/0091-7613(2002)030<0443:OCFTTO>2.0.CO;2
Mikkelsen, O.A., Pejrup, M., 2000. In situ particle size spectra and density of particle aggregates in a dredging plume. Mar. Geol. 170, 443–459. doi:10.1016/S0025-3227(00)00105-5
Mikkelsen, O., Pejrup, M., 2001. The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity. Geo-Mar. Lett. 20, 187–195. doi:10.1007/s003670100064
Milliman, J.D., 1995. Sediment discharge to the ocean from small mountainous rivers: The New Guinea example. Geo-Mar. Lett. 15, 127–133. doi:10.1007/BF01204453
Milliman, J.D., Farnsworth, K.L., Albertin, C.S., 1999. Flux and fate of fluvial sediments leaving large islands in the East Indies. J. Sea Res. 41, 97–107.
Milliman, J.D., Kao, S.-J., 2005. Hyperpycnal discharge of fluvial sediment to the ocean: Impact of Super-Typhoon Herb (1996) on Taiwanese rivers. J. Geol. 113, 503–516.
Milliman, J.D., Lin, S.W., Kao, S.J., Liu, J.P., Liu, C.S., Chiu, J.K., Lin, Y.C., 2007. Short-term changes in seafloor character due to flood-derived hyperpycnal discharge: Typhoon Mindulle, Taiwan, July 2004. Geology 35, 779–782.
Milliman, J.D., Syvitski, J.P., 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol. 525–544.
Mulder, T., Syvitski, J.P., 1995. Turbidity currents generated at river mouths during exceptional discharges to the world oceans. J. Geol. 285–299.
Mulder, T., Syvitski, J.P.M., Migeon, S., Faugères, J.-C., Savoye, B., 2003. Marine hyperpycnal flows: initiation, behavior and related deposits. A review. Mar. Pet. Geol. 20, 861–882. doi:10.1016/j.marpetgeo.2003.01.003
Mullenbach, B.L., Nittrouer, C.A., Puig, P., Orange, D.L., 2004. Sediment deposition in a modern submarine canyon: Eel Canyon, northern California. Mar. Geol. 211, 101–119. doi:10.1016/j.margeo.2004.07.003
Palanques, A., El Khatab, M., Puig, P., Masqué, P., Sánchez-Cabeza, J.A., Isla, E., 2005. Downward particle fluxes in the Guadiaro submarine canyon depositional system (north-western Alboran Sea), a river flood dominated system. Mar. Geol. 220, 23–40. doi:10.1016/j.margeo.2005.07.004
Parsons, J.D., Bush, J.W., Syvitski, J.P., 2001. Hyperpycnal plume formation from riverine outflows with small sediment concentrations. Sedimentology 48, 465–478.
Rendings, R.R., Anderson, R.Y., Xu, J., Davis, R.E., Bergeron, E., 2009. The Partition Intervalometer: A Programmable Underwater Timer for Marking Accumulated Sediment Profiles Collected in Anderson Sediment Traps: Development, Operation, Testing Procedures, and Field Results (Open-File Report No. 2009-1101). U.S. Geological Survey.
Shanmugam, G., 2000. 50 years of the turbidite paradigm (1950s—1990s): deep-water processes and facies models—a critical perspective. Mar. Pet. Geol. 17, 285–342. doi:10.1016/S0264-8172(99)00011-2
Snyder, P.J., Hsu, T.-J., 2011. A numerical investigation of convective sedimentation. J. Geophys. Res. 116, 15 PP. doi:201110.1029/2010JC006792
Sobarzo, M., Figueroa, M., Djurfeldt, L., 2001. Upwelling of subsurface water into the rim of the Biobıo submarine canyon as a response to surface winds. Cont. Shelf Res. 21, 279–299.
Sparkes, R.B., 2012. Marine Sequestration of Particulate Organic Carbon from Mountain Belts. University of Cambridge.
Sternberg, R.W., Berhane, I., Ogston, A.S., 1999. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf. Mar. Geol. 154, 43–53.
Syvitski, J.P.M., 2003. Sediment fluxes and rates of sedimentation, in: Sedimentology, Encyclopedia of Earth Science. Springer Netherlands, pp. 980–992.
Turner, A., Millward, G.., 2002. Suspended Particles: Their Role in Estuarine Biogeochemical Cycles. Estuar. Coast. Shelf Sci. 55, 857–883. doi:10.1006/ecss.2002.1033
Van der Lee, W.T., 2000. Temporal variation of floc size and settling velocity in the Dollard estuary. Cont. Shelf Res. 20, 1495–1511.
Van Leussen, W., 1994. Estuarine macroflocs and their role in fine-grained sediment transport. University Utrecht, Netherlands.
Walling, D.E., Webb, B.W., 1996. Erosion and sediment yield: a global overview. IAHS Publ.-Ser. Proc. Rep.-Intern Assoc Hydrol. Sci. 236, 3–20.
Wang, Y.H., Lee, I.H., Liu, J.T., 2008. Observation of internal tidal currents in the Kaoping Canyon off southwestern Taiwan. Estuar. Coast. Shelf Sci. 80, 153–160. doi:10.1016/j.ecss.2008.07.016
Water Resources Agency, 2013. Hydrological year book of Taiwan Republic of China, Part II -River stage and discharge. Ministry of Economic Affairs.
Wright, L.D., Wiseman Jr, W.J., Yang, Z.-S., Bornhold, B.D., Keller, G.H., Prior, D.B., Suhayda, J.N., 1990. Processes of marine dispersal and deposition of suspended silts off the modern mouth of the Huanghe (Yellow River). Cont. Shelf Res. 10, 1–40. doi:10.1016/0278-4343(90)90033-I
Wright, L.D., Wiseman, W.J., Bornhold, B.D., Prior, D.B., Suhayda, J.N., Keller, G.H., Yang, Z.-S., Fan, Y.B., 1988. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows. Nature 332, 629–632. doi:10.1038/332629a0
Wright, L.D., Yang, Z.S., Bornhold, B.D., Keller, G.H., Prior, D.B., Wiseman, W.J., 1986. Hyperpycnal plumes and plume fronts over the Huanghe (Yellow River) delta front. Geo-Mar. Lett. 6, 97–105.
Xu, J.P., 2010. Normalized velocity profiles of field-measured turbidity currents. Geology 38, 563–566. doi:10.1130/G30582.1
Xu, J., Swarzenski, P.W., Noble, M., Li, A.C., 2010. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California. Mar. Geol. 269, 74–88.
Yu, H.S., Chiang, C.S., Shen, S.M., 2009. Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Gaoping (Kaoping) Submarine Canyon. J. Mar. Syst. 76, 369–382.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code