Responsive image
博碩士論文 etd-0811115-154738 詳細資訊
Title page for etd-0811115-154738
論文名稱
Title
內嵌式銲接工具應用於異種金屬摩擦攪拌銲接過程之理論與實驗研究
Theoretical and Experimental Studies on the Friction Stir Welding of Dissimilar Materials using an Embedded-rod Tool
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
47
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-29
繳交日期
Date of Submission
2015-09-14
關鍵字
Keywords
接合面、異種金屬、塑性流動、時間歷程、摩擦攪拌搭接
material flow, time history, friction stir lap joint, faying surface, dissmillar materials
統計
Statistics
本論文已被瀏覽 5675 次,被下載 680
The thesis/dissertation has been browsed 5675 times, has been downloaded 680 times.
中文摘要
為了瞭解異種金屬之摩擦攪拌點銲搭接的溫升與塑性流動速度,本研究建立一適用於內嵌式工具之數值模型,並與實驗結果互相比對,驗證理論模型的正確性。首先,先進行鋼/鋼搭接之模擬,計算工件溫度與塑性流動速度之歷程,點銲初期理論計算之溫昇速率較實驗值大,此乃因為實驗初期工具與工件之貼合度不佳,之後隨著貼合度變佳兩者之溫度逐漸一致。鋼/鋁搭接與鋁-鋼搭接之模擬,計算工件溫度與塑性流動速度歷程,由比較鋼/鋼搭接與鋼-鋁搭接,可以得知由於鋁板熱傳導係數約低碳鋼2.6 倍,因此單位時間內溫升速率較慢,溫度也較低,隨著鋁板的厚度越厚,鋼/鋁接合面的溫度會越低且塑性流動的範圍會越窄,一般而言,上下板熱傳導係數越大,接合面溫度就會越低,且需要更高的轉述以及擠壓力量來達到相同的介面溫度
Abstract
. In order to understand the temperature rise and the plastic flow of the workpiece in the friction stir spot lap welding (FSSLW) of dissimilar metals, a numerical model suitable for the embedded tool is established in this study. Theoretical results are compared with that of experimental measurements to verify the theoretical model. First, the simulation for the steel on steel FSSLW is conducted to calculate the time histories of the temperature rise and plastic flow of the workpiece. Results show that the rate of temperature rise is larger than that of measured one at the initial stage of FSSLW due to the fitting degree between tool and workpiece in the experiment, but they are consistent with each other after that. Comparison of steel/aluminum and aluminum/steel FSSLW, results show that the rate of temperature rise of steel/aluminum is slower than that of steel/steel since the thermal conductivity of aluminum is 2.6 times as large as that of low-carbon steel. With the thicker aluminum plate, the faying surface temperature between the steel and aluminum is lower than that of thinner one, and narrower range of plastic flow. In general, the higher thermal conductivity for both upper and lower plates would lower the faying surface temperature, and they need to use the higher rotating speed and the higher downward to achieve the same surface temperature.
目次 Table of Contents
審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 摩擦攪拌銲接概論 1
1.2 文獻回顧 2
1.3 研究目的 4
1.4 論文架構 5
第二章 論模型 6
2.1圓柱座標系 6
2.2銲接工具種類 7
2.3 熱傳模型 8
2.4 黏度模型 11
2.5 材料塑性變形產熱 13
2.6 材料塑性流動模型 15
2.7 試片上表面速度與溫度之計算 16
2.8 有限差分法 17
第三章 果與討論 24
3.1與實驗比較並探討不同銲接工具對溫度與速度之影響 26
3.2與實驗比較並探討鋼/鋼搭接之溫度歷程與塑性流動 27
3.2與實驗比較並探討不同鋁板厚度對溫度之影響 29
3.3與實驗比較並探討鋁/鋼搭接之溫度歷程與塑性流動 32
3.4不同熱傳導係數對溫度之影響 33
第四章 論 35
4.1 結論 35
4.2 未來展望 36
參考文獻 37
參考文獻 References
[1] W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Church, P. Templesmith, and C. Dawes, Internationl Patent Application no PCT/GB92/ 02203 and GB Patent Application no. 9125978.9. 1991
[2] E. Schbert, M. Klassen, I. Zener, C. Walz, G. Sepold, J. Mater. Prod. Tech. 115 (2001) 2–8.
[3] .M. Roulin, J.W. Luster, G. Karadeniz, A. Mortensen, Wel. J. 78 (1999) 151– 155.
[4] H.T. Lee, M.H. Chen, Mater. Sci. Eng. 333 (2002) 24–34.
[5] K.J. Lee, S. Kumai, Mater. Trans. 47 (2006) 1178–1185.
[6] R. Padmanabhan, M.C. Oliveira, L.F. Menezes, Mater. Des. 29 (2008) 154–160.
[7] T. Ogura, H. Umeshita, Y. Saito, A. Hirose, Q.J. Jpn, Weld. Soc. 27 (2009) 174–178.
[8] T. Ogura, K. Ueda, Y. Saito, A. Hirose, Mater. Trans. 52 (2011) 979–984.
[9] Kittipong Kimapong and Takehiko Watanabe, Lap Joint of A5083 Aluminum Alloy and SS400 Steel by Friction Stir Welding 4 (2005) 835–841
[10] Kittipong. Kimapong, and Takehiko. Watanabe, Effect of welding process parameters on mechanical property of FSW Lap joint between aluminum alloy and steel. 10 (2005) 2211–2217
[11] A. Elrefaey, A. Takahashi and K. Ikeuchi: Preprints of the national meeting of JWS. 73 (2003) 66–67
[12] Tomo Ogura,a,Yuichi Saito,Taichi Nishida,Hidehito Nishida,Takumi Yoshida,b Noriko Omichi,Mitsuo Fujimotob and Akio Hirose, Partitioning evaluation of mechanical properties and the interfacial microstructure in a friction stir welded aluminum alloy/stainless steel lap joint 66 (2012) 531–534.
[13] Mitsuhiro Watanabe; Keyan Feng, Yoshio Nakamura and Shinji Kumai, Growth Manner of Intermetallic Compound Layer Produced at Welding Interface of Friction Stir Spot Welded Aluminum/Steel Lap Joint 5 (2011) pp. 953 to 959
[14] Y. Chao and X. Qi, Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6. J. Mater. Proc. Mfg. Sci., 1998. 7: p. 215-223.
[15] Ø. Frigaard, Ø. Grong, and O.T. Midling, A Process Model for Friction Stir Welding of Age Hardening Aluminum Alloys. Metallurgical and Materials Transactions A, 2001. 32A: p. 1189-1200
[16] H. Schmidt, J. Hattel, and J. Wert, An analytical model for the heat generation in friction stir welding. Modeling Simul. Mater. Sci. Eng., 2004. 12: p. 143-157.
[17] R. Nandan, B. Prabu, A. De, and T. DebRoy, Improving Reliability of Heat Transfer and Materials Flow Calculations during Friction Stir Welding of Dissimilar Aluminum Alloys. Welding Journal, 2007. 86: p. 313-322.
[18] R. Nandan, G.G. Roy, and T. DebRoy, Numerical Simulation of Three Dimensional Heat Transfer and Plastic Flow During Friction Stir Welding. Metallurgical and Materials Transactions A, 2006. 37A: p. 1247-1259.
[19] R. Nandan, G.G. Roy, T.J. Lienert, and T. DebRoy, Three-dimensional heat and material flow during friction stir of mild steel. Acta Materialia 2007. 55: p. 883-895..
[20] P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheillet, D. Allehaux, Mechanical and thermal modelling of friction stir welding, Journal ofMaterials Processing Technology Vol.171: 348–357. (2006)
[21] B.C. Liechty, B.W. Webb, Modeling the frictional boundary condition in friction stir welding, in: International Journal of Machine Tools & Manufacture Vol.48:1474–1485.(2008)
[22] C.M. Sellars and W.J. McTegart, On the mechanism of hot deformation. Acta Metall, 1966. 14: p. 1136-1138.
[23] O.C. Zienkiewicz and I.C. Cormeau, Vis-co-plasticity solution by finite- element process. Arch Mech, 1972. 24: p. 872-889.
[24] H.S. Kong and M.F. Ashby, Friction-heating maps and their applications. MRS Bull, 1991. 16: p. 41-48.
[25] J.A. Khan, L. Xu, and Y.J. Chao, Prediction of nugget development during resistance spot welding using coupled thermal-electrical-mechanical model. Sci Technol Weld Join, 1999. 4: p. 201-207.
[26] Z. Deng, M.R. Lovell, and K.A. Tagavi, Influence of material properties and forming velocity on the interfacial slip characteristics of cross wedge rolling. Manuf Sci Eng, 2001. 123: p. 647-653.
[27] S. Xu, X. Deng, A.P. Reynolds, and T.U. Seidel, Finite element simulation of material flow in friction stir welding. Sci Technol Weld Join, 2001. 6(3): p. 191-193.
[28] A. Kumar and T. DebRoy, Guaranteed fillet weld geometry from heat transfer model and multivariable optimization. Int J Heat Mass Transfer, 2004. 47(26): p. 5793-5806.
[29] A. Kumar A, W. Zhang, and T. DebRoy, Improving reliability of modelling heat and fluid flow in complex gas metal arc fillet welds. Part I: An engineering physics model. J Phys D: Appl Phys, 2005. 38: p. 119-126.
[30] A. De and T. DebRoy, Reliable calculations of heat and fluid flow during conduction mode laser welding through optimization of un-certain parameters. Weld J., 2005. 84: p. 101-112.
[31] A. De and T. DebRoy, Probing unknown welding parameters from convective heat transfer calculation and multivariable optimization. J Phys D Appl Phys, 2006. 37(1): p. 140-150.
[32] R. Nandan, T. Debroy, and H.K.D.H Bhadeshia, Recent advances in friction-stir welding - Process, weldment structure and properties. Progress in Materials Science, 2008. 53(6): p. 980-1023.
[33] 力偉倫, 摩擦模型應用於摩擦攪拌銲接過程熱傳導與材料流動之理論與實務研究, in 機械與機電研究所. 2013, 國立中山大學.
[34] 李宥均, 內嵌式焊接工具應用於摩擦攪拌焊接過程熱傳導與材料流動之理論與實驗研究, in 機械與機電研究所. 2014, 國立中山大學.
[35] A. Bastier, M.H. Maitournam, K. Dang Van, and F. Roger, Steady State Thermomechanical Modelling of Friction Stir Welding. Science and Technology of Welding and Joining, 2001. 11(3): p. 278-288.
[36] T. Sheppard and D.S. Wright, Met. Tech., 1979. 6: p. 215-223.
[37] O.C. Zienkiewicz and I.C. Cormeau, Int J Numer Methods Eng, 1974. 8: p. 821-845.
[38] H. Schmidt, J. Hattel, and J. Wert, An analytical model for the heat generation in friction stir welding. Modeling Simul. Mater. Sci. Eng., 2004. 12: p. 143-157.
[39] M. Khonsari and E. Richard Booser, Applied Tribology Bearing Design and Lubrication. 2001, United States of America: A Wiley-Interscience.
[40] 吳俊賢, 用組合式碳化鎢工具探討碳鋼對鋁合金之摩擦攪拌搭接之研究, in機械與機電研究所. 2013, 國立中山大學
[41] 邱源成, 李榮宗, “摩擦攪拌熔接工作台及其夾具”, 中華民國發明專利申請第 99104456 號。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code