Responsive image
博碩士論文 etd-0815115-171350 詳細資訊
Title page for etd-0815115-171350
論文名稱
Title
複合式阻尼器在結構減震與波能收集優化之研究
A Study of Hybrid TMD and TLD on Structure Motion Reduction and Wave Energy Capture
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-08-28
繳交日期
Date of Submission
2015-09-15
關鍵字
Keywords
線性發電機、調諧質量阻尼器、自然共振頻率、雙自由度系統、調諧液態阻尼器、波浪能源收集系統
Wave energy capture, Natural frequency, Two degrees of freedom, Tuned Mass Damper, Tuned Liquid Damper, LPMSG
統計
Statistics
本論文已被瀏覽 5784 次,被下載 1249
The thesis/dissertation has been browsed 5784 times, has been downloaded 1249 times.
中文摘要
本研究探複合式調諧阻尼器在雙自由度系統下的最佳減震頻率與線性發電機應用;利用不同水深以及調諧質量阻尼器的重量變化下探討最佳減震範圍。當減震系統為調諧液體阻尼器(Tuned Liquid Damper)及調諧質量阻尼器(Tuned Mass Damper)複合而成時,只要將水槽自然共振頻率與外力一致時,即能有效地抵消外力,並利用調諧質量(TMD)消散系統能量,讓結構物或海上平台的振幅達到最低;複合式調諧阻尼系統,在特徵頻率(Eigen frequency)時能量會集中於線性發電機,雙自由度系統的擺盪使液態水槽與結構物產生的耦合作用力降低,能夠有效減少結構物晃動,此時的線性發電機晃動幅度提升至最大,速度達到最大,所獲得的功率也會提升。
Abstract
The structure of hybrid TMD and TLD damping frequency and LPMSG applications in two degrees of freedom in this study. The use of different water depths and tuned mass damper weight change to explore the best damping range. Hybrid TMD and TLD system, when the external forcing frequency of the Dynamic Vibration Absorber System composed by a tuned liquid damper and a tuned mass damper is identical to the fundamental frequency of the tank, the external force can be effectively diminished by the sloshing-induced force. Under the Hybrid TMD and TLD system, the energy will concentrated in LPMSG at the Eigen frequency. The reason is the shaking of TMD will decrease the coupling force between TLD and base structure. This can highly decrease the shaking displacement of the base structure. On the other hand, the shaking displacement and the velocity of LPMSG will increased to maximum. Therefore, the generating power will increased.
目次 Table of Contents
目錄
論文審定書..........................................................i
謝誌...............................................................ii
中文摘要..........................................................iii
Abstract ............................................................iv
目錄................................................................v
符號說明.........................................................viii
表目錄..............................................................x
圖目錄.............................................................xi

第一章- 緒論
1-1、前言........................................................1
1-2、研究動機....................................................4
1-2.1、海上平台的減震及波能收集...............................5
1-2.2、波浪能轉化系統.........................................8
1-3、文獻回顧...................................................10
1-3.1、TMD諧調質量阻尼器...................................15
1-3.2、TLD諧調液體阻尼器...................................16
1-4、線性馬達...................................................17
1-4.1、線性發電機工作原理....................................17
1-4.2、電磁阻尼裝置結構設計與特性分析........................20
1-4.3、線性發電機結構設計....................................20



第二章 系統控制
2-1、自動控制-PID系統...........................................24
2-2、PID系統操作................................................27
2-3、混合應用PID controller.......................................30

第三章 實驗設計
3-1複合式諧調阻尼器實驗配置....................................35
3-1.1、複合式結構物之運動分析................................37
3-1.2、實驗平台架構..........................................39
3-1.3、實驗平台操作-實驗控制面板.............................40
3-1.4、實驗流程..............................................41
3-1.5、實驗儀器規格介紹......................................42
3-2、Runge–Kutta法..............................................45
3-3、線性馬達發電功效...........................................50
3-4、實驗參數設置...............................................56

第四章 結果與討論
4-1、平推式發電系統的減震分析與應用.............................57
4-2、不同種類減震系統的分析與比較...............................57
4-2.1、Base單一結構物.......................................58
4-2.2、諧調液體阻尼器(Tuned Liquid Damper , TLD) ...............59
4-2.3、諧調質量阻尼器 (Tuned Mass Damper , TMD) ..............78
4-2.4、複合式減震阻尼器(TMD+TLD) ..........................81
4-3、各種阻尼器減震效果.........................................94
4-4、複合式阻尼減震效果與討論...................................96
4-5、波浪能收集系統發電功率.....................................98

第五章 結論與建議
5-1、結論......................................................103
5-2、建議及未來發展............................................104

第六章 參考文獻...................................................106
附錄A............................................................109
附錄B............................................................113
附錄C............................................................118
參考文獻 References
1. Bhattacharjee et al. (2013). An experimental study on tuned liquid damper for mitigation of structural response” International Journal of Advanced.
2. M. Marivani、M.S. Hamed. (2009). Numerical simulation of structure response outfitted with a tuned liquid damper. Computers & Structures, Volume 87, Issues 17–18, 2009, 1154–1165.
3. J.B. Frandsen (2005), Numerical predictions of tuned liquid tank structural systems, Journal of Fluids and Structures 20, 309–329
4. J.B. Frandsen (2004). Sloshing motions in excited tanks, Journal of Computational Physics 196 ,53–87
5. Liu, D. and P. Lin (2008). A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics, 227(8): 3921-3939.
6. Drimer, N., Agnon, Y., & Stiassnie, M. (1992). A Simplified Analytical Model for a Floating Breakwater in Water of Finite Depth. Applied Ocean Research, 14(1), 33-41.
7. Hoang, N., & Warnitchai, P. (2005). Design of multiple tuned mass dampers by using a numerical optimizer. Earthquake Engineering & Structural Dynamics, 34(2), 125-144.
8. Faltinsen, O. M., & Timokha, A. N. (2002). Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. Journal of Fluid Mechanics, 470, 319-357.
9. Kazuya Yamamoto、Mutsuto Kawahara,(1999), Structural oscillation control using tuned liquid damper. Computers & Structures, Volume 71, Issue 4, May 1999, 435–446.
10. Chen, B.F., & Wu, C.H. (2006). 3D fully nonlinear sloshing fluid in tanks by a time-independent finite different method, Ocean Engineering Conference, 28th. 433-438.
11. Chen, B.F., & Wu, C.H. (2007). Classification of Three-dimensional Nonlinear Sloshing in a Square-base Tank with Finite Depth, Ocean Engineering Conference, 29th. 83-88.
12. Chen, B.F., & Chiang, H.W. (1999). Complete 2d and fully nonlinear analysis of ideal fluid in tank. Journal of Engineering Mechanics-Asce, 125(1), 70-80.
13. Chen, B.F., & Wu, C.H. (2006). 3D fully nonlinear sloshing fluid in tanks by a time-independent finite different method, Ocean Engineering Conference, 28th. 433-438.
14. Tait M. (2004). The performance of 1-D and 2-D tuned liquid dampers. PhD thesis. University of Western Ontario, London, Canada.
15. Karl Johan Astrom., (2002). PID Control, Control System Design, 216-217&225.
16. L.M. Sun et al. (1992). Modelling of tuned liquid damper (TLD). Journal of Wind Engineering and Industrial Aerodynamics. Volume 43, Issues 1–3, 1883-1894
17. Karl Johan Astrom. (2002). PID Control. Control System Design. Volume 6, 216-251
18. Gebrail Bekdaş., & Sinan Melih Nigdeli. (2011). Estimating optimum parameters of tuned mass dampers using harmony search. Engineering Structures,33,2716-2723.
19. Kareem Khirallah et al. (2011). Nonlinear Dynamics of Spring Softening and Hardening in Folded-MEMS Comb Drive Resonators. Journal Of Microelectromechanical Systems. Volume 20. 943-958
20. Siddique. , & Hamed. (2004). A nonlinear numerical model for sloshing motion in tuned liquid dampers. HFF. 5,3. 306-324
21. Yamamoto, K., Kawahara, M., (1999). Structural oscillation control using tuned liquid dampers. Computers and Structures 71, 435–446.
22. A, Samanta1., &P, Banerji., (2008). Structural Control Using Modified Tunesd Liquid Dampers. World Conference on Earthquake Engineering 14th.
23. Banerji, P., Murudi, M., Shah, A.H. and Popplewell, N. (2000). Tuned liquid dampers for controlling earthquake response of structures. Earthquake Engineering and Structural Dynamics 29:5, 587-602.
24. B. F. Spencer Jr. 2003. State of the Art of Structural Control. JOURNAL OF STRUCTURAL ENGINEERING. 845-856.
25. 黃光力(2012),「海洋波能收集系統¬¬¬-平移推動是水槽」,國立中山大學碩士論文,3-15頁~3-17頁,4-1頁~4-25頁。
26. 李亮承(2008),「波浪作用下浮式水槽的動態反應」,國立中山大學碩士論文,2-1頁~2-3頁、3-1頁~3-6頁。
27. 呂錫民(2015年4月15號)。台灣發展波浪能的評估。台灣科技部-科學發展,508,57-58。
28. 康正泓(2010)。線性永磁同步發電機於波浪能量轉換系統之設計與分析。中華民國第三十一屆電力工程研討會,401-407。
29. 行政院-產業科技策略會議(2007)( http://www.bost.ey.gov.tw/Default.aspx ).
30. 國立中興大學 AECL尖端電控實驗室-PID控制器設計教材( http://aecl.ee.nchu.edu.tw ).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code