Responsive image
博碩士論文 etd-0819111-100631 詳細資訊
Title page for etd-0819111-100631
論文名稱
Title
使用內嵌鋁合金材料的高速鋼熔接工具對鋁合金板之摩擦攪拌熔接研究
Studies on the Friction Stir Welding of Aluminum Alloy Sheets by Using High Speed Steel Tool Inserted Aluminum Alloy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-26
繳交日期
Date of Submission
2011-08-19
關鍵字
Keywords
破壞負荷、塑性流動、摩擦攪拌熔接、內嵌式熔接工具、鋁合金
Friction stir welding, Inserted type of friction tool, Aluminum alloy, Plastic flow, Failure load.
統計
Statistics
本論文已被瀏覽 5699 次,被下載 299
The thesis/dissertation has been browsed 5699 times, has been downloaded 299 times.
中文摘要
本研究提出一新穎之內嵌式熔接工具,此熔接工具是在其中心軸
內嵌與工件同材質的圓棒,其可有效快速提升摩擦熱及強化熔接品
質。熔接工具之材質為高速鋼,嵌入料之材質與熔接試片同為6061-T6
鋁合金。熔接設備係使用具有一能量測摩擦攪拌熔接過程中熔接力之
動力計的立式銑床。在熔接過程中,使用K-type 熱電偶同步量測熔接
接合界面溫度。熔接操作條件為工具轉速800rpm,工具傾角1°,預先
夾持力2kN,工具直徑12mm 及下壓深度0.21mm(擠壓力約2kN)。
本實驗分成兩個階段進行。
第一階段為單點熔接實驗,探討嵌入料直徑(d)與熔接工具直徑
(D)之比(d/D)對接合界面溫度、銲道表面下的塑性流動層厚度與
銲道破壞負荷之影響。實驗結果得知,接合界面溫度、塑性流動層厚
度及銲道破壞負荷皆與d/D 成正比。與無嵌入料之熔接工具(d/D=0)
的情況相比較,使用具嵌入料之熔接工具在d/D=0.83 時,接合界面最
大溫度可提升為1.12 倍,塑性流動層厚度提升了1.52 倍及銲道破壞負
荷提升為1.45 倍。第二階段的進給熔接實驗,探討不同嵌入料厚度及
直徑對接合界面溫度、塑性流動層厚度與銲道破壞負荷之影響。實驗
結果得知,嵌入料厚度小於3mm 時,塑性流動層厚度小於2mm,但
在嵌入料厚度大於等於5mm 時,塑性流動層厚度可達3mm,故嵌入
料厚度選用5mm 以上即可。與無嵌入料之熔接工具(d/D=0)的情況
相比較,使用具嵌入料之熔接工具在d/D=0.83 時,接合界面最大溫度
與塑性層厚度之效應與單點熔接情況類似,然而銲道破壞負荷提升為2
倍,較單點熔接為高。
Abstract
In this study, a novel inserted type of friction welding tool was
proposed, where the circular rod was embedded in its central axis using the
material same as the workpiece, so that it could effectively promote the
friction heat quickly and enhance the welding quality. The welding tool
was made of the high-speed steel, the workpiece with its embedded
material 6061-T6 aluminum alloy. A vertical milling machine equipped
with dynamometer, which could measure the power during the friction stir
welding, was employed as the experimental apparatus. During the welding
process, the K-type thermocouple was used simultaneously in measuring
the welding temperature at the interface of joint. The operating conditions
of welding were as followings: the welding speed of 800 rpm, the tool
inclination of 1° and the clamping force 2kN, the tool with 12mm in
diameter and 0.21mm in depth under the downward force about 2 kN. The
experiment was conducted into two stages.
The first stage was a spot welding to investigate the effect of the ratio
of the diameter of embedded material (d) to the diameter of welding tool (D)
on the temperature of the interface of joint, the thickness of plastic flow,
and the failure load of weld. Experimental results revealed that the interface
temperature, the plastic flow thickness, and the failure load of weld are
directly proportional to d/D. In comparison with the welding tool without
insert (d/D = 0), the maximum interface temperature increased about 1.12
times at d/D = 0.83, the plastic flow thickness increased about 1.52 times,
and the failure load of weld increased about 1.45 times. In the second stage,
the feeding process was included to investigate the influence of the
diameter and the thickness of embedded material on the interface
temperature, the plastic flow thickness, and the failure load of weld.
Experimental results revealed that the plastic flow thickness was less than 2
mm when the thickness of embedded material was less than 3 mm.
However, when the thickness of embedded material was larger than 5 mm,
the plastic flow thickness could achieve to 3 mm. Hence, the thickness of
embedded material should be larger than 5mm. Moreover, the effect of the
diameter of embedded material on the interface temperature and the plastic
flow thickness using the feeding process was almost the same as the spot
welding. However, in comparison with the welding tool without insert, the
failure load of weld increased about two times.
目次 Table of Contents
論文審定書…………………………………………………………… i
誌謝………………………………………………………………… ii
中文摘要……………………………………………………………… iii
英文摘要……………………………………………………………… iv
目錄………………………………………………………………… vi
圖次…………………………………………………………………. ix
表次………………………………………………………………… xv
符號說明…………………………………………………………… xvi
第一 章 緒論……………………………………………………… 1
1.1 前言………………………………………………………… 1
1.2 摩擦攪拌熔接概述………………………………………… 2
1.3 文獻回顧…………………………………………………… 4
1.3.1 熔接參數……………………………………………… 4
1.3.2 預熱時間…………………………………………… 7
1.3.3 熔接溫度……………………………………………… 7
1.3.4 銲道組織…………………………………………… 10
1.3.5 熔接工具幾何形狀………………………………… 12
1.4 研究目的………………………………………………… 19
1.5 論文架構………………………………………………… 20
第二 章 理論探討………………………………………………… 21
2.1 接觸狀態的分類………………………………………… 21
2.2 接觸剪應力……………………………………… 22
2.3 扭矩產生之評估………………………………………… 23
2.4 嵌入料直徑對扭矩之影響……………………………… 25
第三 章 實驗設備與方法………………………………………… 26
3.1 三分力動力計…………………………………………… 26
3.2 熔接工具之選用及設計………………………………… 28
3.2.1 熔接工具之材質選用及幾何形狀…………………… 28
3.2.2 嵌入料之材質選用及幾何形狀……………………… 29
3.2.3 熔接工具之製作及修補.……………………………… 30
3.3 實驗試片之選用………………………………………… 32
3.3.1 實驗試片之材料特性.………………………………… 32
3.3.2 實驗試片之幾何形狀.………………………………… 33
3.3.3 量測熔接界面溫度試片之準備……………………… 34
3.4 量測系統………………………………………………… 35
3.5 背部墊塊之選用………………………………… 36
3.6 實驗方法………………………………………………… 36
3.6.1 試片前處理…………………………………………… 36
3.6.2 實驗參數規劃………………………………………… 36
3.6.3 實驗步驟……………………………………………… 38
3.7 銲道表面輪廓之量測…………………………………… 40
3.8 金相觀察試片之取樣…………………………… 41
3.9 拉伸實驗試片之準備…………………………………… 42
3.10 實驗流程………………………………………………… 44
第四 章 結果與討論……………………………………………… 45
4.1 嵌入料直徑對單點銲道熔接品質之影響……………… 45
4.1.1 熔接力與溫度之時間履歷.…………………………… 45
4.1.2 材料轉移量及塑性流動層.…………………………… 48
4.1.3 接合強度……………………………………………… 51
4.1.4 嵌入料直徑對單點熔接特性之影響………………… 55
4.2 嵌入料對長銲道熔接品質之影響………………………55
4.2.1 嵌入料厚度對銲道外觀及塑性流動層之影響……… 55
4.2.2 嵌入料直徑對熔接力與溫度之影響………………… 60
4.2.3 嵌入料直徑對銲道外觀及塑性流動層之影響……… 64
4.2.4 嵌入料直徑對接合強度之影響……………………… 68
4.2.5 嵌入料直徑對進給熔接特性之影響………………… 70
第五 章 結論與未來展望………………………………………… 71
5.1 結論……………………………………………………… 71
5.2 未來展望………………………………………………… 72
參考文獻…………………………………………………………… 73
參考文獻 References
【1】 蔡幸甫, 〝輕金屬在新世代產品的應用與商機〞, 工研院經資
中心, 民國91 年, 第3-2~8-1 頁。
【2】 張文成,〝鋁合金加工技術叢書-鋁及鋁合金之應用〞, 工研院
工業材料研究所, 民國74 年, 第5~8 頁。
【3】 劉文海, 〝鋁合金潛力產品與前景分析〞, 金屬中心出版, 民
國93 年, 第1~5 頁。
【4】 李介英, 徐聰仁,〝鋁合金加工技術叢書-鋁及鋁合金之腐蝕和
防蝕〞, 工研院工業材料研究所, 民國74 年, 第1~3 頁。
【5】 劉文海,〝非鐵金屬特輯-鋁金屬篇〞,金屬中心出版,民國96
年, 第1-3、1-81~1-85 頁。
【6】 譚啟平,〝科學圖書大庫科技訓練自修教材-熔接〞, 徐氏基金
會出版, 民國75 年, 第2~8 頁。
【7】 陳志鵬, 〝熔接學〞, 全華書局, 民國85 年, 第2~4 頁。
【8】 李玉振,〝鋁合金加工技術叢書-鋁及鋁合金銲接〞, 工研院工
業材料研究所, 民國74 年, 第5-9 頁。
【9】 W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P.
Templesmith, C.J. Drawes,〝Friction stir butt welding〞, G B
Patent Application No.9125978.8, Dec. 1991;S.S. Patent No.
5460317, Oct.,1995.
【10】 T. Sakthivel and J. Mukhopadhyay, 〝Microstructure and
mechanical properties of friction stir welded copper〞, Journal of
Materials Science, 42( 2007) 8126-8129.
【11】 W.B. Lee, Y.M. Yeon and S.B. Jung,〝The joint properties of
dissimilar formed Al alloys by friction stir welding according to
the fixed location of materials〞,Scripta Materialia, 49( 2003)
423-428.
【12】 R.S. Mishra and Z.Y. Ma, 〝Friction stir welding and
processing〞, Materials Science and Engineering, 50( 2005)1-78.
【13】 M. W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling and
W.H. Bingel, 〝Properties of friction-stir-welded 7075 T651
aluminum〞, Metallurgical and Material Transaction, 29A( 1998)
1955-1964.
【14】 K.V. Jata, K.K. Sankaran and J.J. Ruschau, 〝Friction stir
welding effects on microstructure and fatigue of aluminum alloy
7075-T7451 〞, Metallurgical and Material Transaction, 31A
( 2000) 2181-2192.
【15】 K.J. Colligan, J.J. Fisher, E.J. Gover and J.R. Pickens, 〝Friction
stir welding in the Al〞, Advanced Material and Processes, 160
( 2002) 39-41.
【16】 M. Ericsson and R. Sandstrom, 〝Influence of welding speed on
the fatigue of friction stir welds, and comparison with MIG and
TIG〞, International Journal of Fatigue, 25( 2003) 1379-1387.
【17】 C.M. Chen and R. Kovacevic, 〝Finite element modeling of
friction stir welding-thermal and thermomechanical analysis〞,
International Journal of Machine Tools and Manufacture, 43 ( 2003 )
1319-1326.
【18】 M. Peel, A. Steuwer, M. Preuss and P.J. Withers, 〝Microstructure,
mechanical properties and residual stresses as a function of
welding speed in aluminium AA5083 friction stir welds〞, Acta
Materialia, 51( 2003) 4791-4801.
【19】 D. Wang, S. Liu and Z.Cao, 〝Study of friction stir welding of
aluminum〞, Journal of Materials Science, 39( 2004)1689-1693.
【20】 S. Lathabai, M.J. Painter, G.M.D. Cantin and V.K. Tyagi,
〝Friction spot joining of an extruded Al-Mg-Si alloy〞, Scripta
Materialia, 55( 2006) 899-902.
【21】 D. Mitlin, V. Radmilovic, T. Pan, J. Chen, Z. Feng and M.L.
Santella,〝Structure-properties relations in spot friction welded
(also known as friction stir spot welded) 6111 aluminum 〞,
Materials Science and Engineering, 441A( 2006) 79-96.
【22】 W. Woo, H. Choo, D. W. Brown, Z. Feng and P. K. Liaw,
〝Angular distortion and through-thickness residual stress
distribution in the friction-stir processed 6061-T6 aluminum
alloy〞, Materials Science and Engineering, 437A( 2006)64-69.
【23】 G. Buffa, J. Hua, R. Shivpuri and L. Fratini,〝A continuum based
fem model for friction stir welding-model development 〞,
Materials Science and Engineering, 419A( 2006) 389-396.
【24】 Y. Uematsu, K. Tokaji, S. Murata, Y. Tozaki and T. Kurita,
〝Fatigue behaviour of friction stir spot welded Al-Mg-Si alloy〞
Materials Science Forum, 56( 2007) 537-543.
【25】 M. Kokubo, S. Kazui, T. Kaneuchi, Y. Takayama, H. Kato and S.
Hirano, 〝Relation between strength and microstructure in
friction stir welded joints of A383 and A5052 aluminum alloys〞,
Materials Science Forum, 539-543( 2007) 3789-3794.
【26】 M. Katashi, T. Masami, Y. Toshiaki and F. Masahiro, 〝Spot
welding between aluminum alloy and low carbon steel by friction
stirring〞, Welding International, 26( 2008) 42-47.
【27】 M. Gutensohn, G. Wangner, F. Walther and D.Eifler,〝The fatigue
behaviour of friction stir welded aluminium joints〞, Welding in
the Word 52,( 2008) 69-74.
【28】 A. Scialpi, M. De Giorgi, L.A.C. De Filippis, R. Nobile and F.W.
Panella,〝Mechanical analysis of ultra-thin friction stir welding
joined sheets with dissimilar and similar materials〞, Materials
and Design, 29 (2008) 928–936.
【29】 C.Y. Lee, W.B. Lee, J.W. Kim, D.H. Choi, Y.M. Yeon and S.B.
Jung,〝Lap joint properties of FSWed dissimilar formed 5052 Al
and 6061 Al with different thickness〞, Journal of Materials Science,
43( 2008) 3296-3304.
【30】 M. Fujimoto, D. Watanabe, N. Abe, Sato S. Yutaka and H.
Kokawa, 〝Effect of process time and thread on tensile shear
strength of Al alloy lap joint produced by friction stir spot
welding〞, Welding International, 26( 2008) 253-258.
【31】 Y. Uematsu, K. Tokaji, Y. Tozaki, T. Kurita and S. Murata,
〝Effect of post-heat treatment on the fatigue behaviour of a
friction stir spot-welded Al-Mg-Si alloy〞, Welding International,
23( 2009) 481-489.
【32】 D.H. Lammlein, D.R. DeLapp, P.A. Fleming, A.M. Strauss and
G.E. Cook, 〝The application of shoulderless conical tool in
friction stir welding: An experimental and theoretical study〞,
Materials and Design, 30( 2009) 4012-4022.
【33】 M. Fujimoto, K. Shinji, N. Abe, Sato S. Yutaka and H. Kokawa,
〝Analysis of plastic flow of the Al alloy joint produced by
friction stir spot welding〞, Welding International, 23( 2009)
589-596.
【34】 M. Fukumoto, K. Miyagawa, M. Tsubaki and T. Yasui, 〝Spot
welding between aluminum alloy and steel by friction stirring〞,
materials science forum, 638-642( 2010) 1227-1232.
【35】 S. Bozzi, A.L. Helbert-Etter, T. Baudin, V. Klosek, J.G.
Kerbiguet and B. Criqui,〝Influence of FSSW parameters on
fracture mechanisms of 5182 aluminium welds 〞, Materials
Processing Technology, 210( 2010) 1429-1435.
【36】 P. B. Prangnell and D. Bakavos,〝Novel approaches to friction
spot welding thin aluminium automotive sheet 〞, Materials
Science Forum, 638-642( 2010) 1237-1242.
【37】 A. Ikuta, Y. Yin and T. H. North,〝Influence of tool thread on the
mechanical properties of dissimilar Al-alloy friction stir spot
welds〞, Welding International, 28 ( 2010) 346-354.
【38】 N. Yamamoto, J. Liao, S. Watanabe and K. Nakata,〝Effect of
intermetallic compound layer on tensile strength of dissimilar
friction-stir weld of a high strength Mg alloy and Al alloy〞,
Materials Transactions, 50( 2009) 2833-2838.
【39】 D.H. Choi, B.W. Ahn, C.Y. Lee, Y.M. Yeon, K. Song and S.B.
Jung,〝Formation of intermetallic compounds in Al and Mg alloy
interface during friction stir spot welding〞, Intermetallics, 19
( 2011) 125-130.
【40】 K. Tanaki, M. Kumagai and H. Yoshida,〝Dissimilar joining of
aluminum alloy and steel sheets by friction stir spot welding〞,
Keikinzoku/Journal of Japan Institute of Light Metals, 56( 2006)317-322.
【41】 S. Kumai, H. Sato, K. Suzuki, T. Ookawa, K. J. Lee and M.
Watanabe,〝Effect of probe tip position on microstructure and
bonding strength of friction stir welded aluminum alloy/steel lap
joint〞, Keikinzoku/Journal of Japan Institute of Light Metals, 57( 2007)
529-535.
【42】 M. Watanabe, T. Ookawa and S. Kumai,〝Formation of laminate
structure at the friction stir weld interface of aluminum
alloy/steel lap joint〞, Keikinzoku/Journal of Japan Institute of Light
Metals, 57( 2007) 536-541.
【43】 S. Bozzi, A.L. Helbert-Etter, T. Baudin, B. Criqui and J.G.
Kerbiguet,〝Intermetallic compounds in Al 6061/IF-steel friction
stir spot welds〞, Materials Science and Engineering, 527A( 2010)
4505-4509.
【44】 V.X. Tran and J. Pan〝, Fatigue behavior of dissimilar spot friction
welds in lap-shear and cross-tension specimens of aluminum and
steel sheets 〞, International Journal of Fatigue, 32 ( 2010 )
1167-1179.
【45】 V.X. Tran and J. Pan, 〝Effects of weld geometry and sheet
thickness on stress intensity factor solutions for spot and spot
friction welds in lap-shear specimens of similar and dissimilar
material〞, Engineering Fracture Mechanics, 77( 2010)1417-1438.
【46】 C.J. Hsu, P.W. Kao and N.J. Ho,〝Ultrafine-grained Al-Al2Cu
composite produced in situ by friction stir processing〞, Scripta
Materialia, 53( 2005) 341-345.
【47】 H.J. Lin, Y.C. Chen and J.C. Feng,〝Effects of zigzag line on the
mechanical properties of friction stir welded joints of Al-Cu
alloy〞, Scripta Materialia, 55( 2006) 231-234.
【48】 A. Abdollah-Zadeh, T. Saeid and B. Sazgari,〝Microstructural and
mechanical properties of friction stir welded aluminum/copper
lap joints 〞,Journal of Alloys and Compounds, 460 ( 2008 )
535-538.
【49】 P. Xue, B.L. Xiao, D.R. Ni and Z.Y. Ma,〝Enhanced mechanical
properties of friction stir welded dissimilar Al-Cu joint by
intermetallic compounds〞, Materials Science and Engineering,
527A( 2010) 5723-5727.
【50】 T. Boon, W.M. Thomas and P. Temple-Smith,〝Friction welding
apparatus and method〞, US Patent, US 6 325 273 B1, Dec. 2001.
【51】 J.A. Esparza, W.C. Davis, E.A. Trillo and L.E. Murr,
〝Friction-stir welding of magnesium alloy AZ31B〞, Journal of
Materials Science Letters, 21( 2002) 917-920.
【52】 P. Su, A. Gerlich, M. Yamamoto and T.H. North, 〝Formation and
retention of local melted films in AZ91 friction stir spot welds〞,
Journal of Materials Science Letters, 42 (2007) 9954–9965.
【53】 L. Commin, M. Dumont, J.-E. Masse and L. Barrallier, 〝Friction
stir welding of AZ31 magnesium alloy rolled sheets: Influence of
processing parameters〞, Acta Materialia, 57 (2009) 326–334.
【54】 R.M. Leal, C. Leitao, A. Loureiro, D.M. Rodringues and P.
Vilaca, 〝Microstructure and hardness of friction stir welds in
pure copper〞, Materials Science Forum, 636-637( 2010)637-642.
【55】 H.S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata and M.
Ushio,〝Microstructures and mechanical properties of friction stir
welds of 60% Cu-40% Zn copper alloy〞, Materials Science and
Engineering, 371A( 2004) 160-169.
【56】 W.B. Lee, C.Y. Lee W.S. Chang, Y.M. Yeon and S.B. Jung,
〝Microstructural investigation of friction stir welded pure
titanium〞, Materials Letters, 59( 2005) 3315-3318.
【57】 A.P. Reynolds, W. Tang, M. Posada and J. DeLoach, 〝Friction stir
welding of DH36 steel〞, Science and Technology of Welding and
Joining, 8( 2003) 455-461.
【58】 T. Huang, Y.S. Sato, H. Kokawa, M.P. Miles, K. Kohkonen, B.
Siemssen, R.J. Steel and S. Packer,〝Microstructural evolution of
DP980 steel during friction bit joining 〞, Metallurgical and
Materials Transactions, 40A( 2009) 2994-3000.
【59】 R. Ohashi, M. Fujimoto, S. Mironov, Y.S. Sato and H. Kokawa,
〝Microstructural characterization of high-strength steel lap joint
produced by friction spot joining〞, Metallurgical and Materials
Transactions, 40A( 2009) 2033-2035.
【60】 蘇子可,〝摩擦攪拌加工技術及應用國際研討會〞,台灣.高雄,
金屬中心出版, 民國93 年。
【61】 Mr. William and J. Arbegast, 〝Using process forces as a
statistical process control tool for friction stir welds〞, TMS
(2005) 193-204.
【62】 K. Aota and K. Ikeuchi, 〝Development of friction stir spot welding using
rotating tool without probe and its application to low carbon steel plates〞,
Welding International, 26 (2008) 54-60.
【63】 K. Aota, M. Takahashi and K. Ikeuchi, 〝Friction stir spot welding of
aluminum to steel by rotating tool without probe〞, Welding International, 26
(2008) 227-234.
【64】 M. Yamamoto, A. Gerlich, T.H. North and K. Shinozaki,
〝Cracking in the stir zones of Mg-alloy friction stir spot welds〞, Journal of
Materials Science, 42 (2007) 7657-7666.
【65】 A. Al-Shahrani and B.P Wynne, 〝Effect of dwell time on friction stir
spot welded dual phase steel〞, Advanced Materials Research, 83-86
(2010) 1143-1150.
【66】 劉澄芳, 林偉邦, 黃明哲, 〝能量守恆法預測鋁合金6061-T6
摩擦攪拌銲接製程之預熱時間〞, 黃埔學報, 53 (2007) 75-88.
【67】 W. Tang, X. Guo, J.C. McClure, L.E. Murr and A. Nunes, 〝Heat
input and temperature distribution in friction stir welding〞, Journal of
Materials Processing & Manufacturing Science, 7 (1998)
163-172.
【68】 A. Gerlich, P. Su and T.H. North, 〝Tool penetration during friction stir
spot welding of Al and Mg alloys 〞, Journal of Materials
Science Forum, 40 (2005) 6473-6481.
【69】 H. Schmidt, J. Hattel and J. Wert, 〝An analytical model for the heat
generation in friction stir welding〞, Materials Science and Engineering,
12 (2004) 143-157.
【70】 A.P. Reynolds, W. Tang, Z. Khandkar, J.A. Khan and K. Lindner,
〝Relationships between weld parameters, hardness distribution and
temperature history in alloy 7050 friction stir welds 〞, Science and
Technology of Welding and Joining, 10 (2005) 190-199.
【71】 J.W. Pew, T.W. Nelson and C.D. Sorensen, 〝Torque based weld
power model for friction stir welding〞, Science and Technology of
Welding and Joining, 12 (2007) 341-347.
【72】 張維麟,〝6061 鋁合金及其顆粒強化銲道之摩擦攪拌銲接研究〞,
中正大學機械工程研究所碩士論文, 民國94 年, 第7∼ 11 頁。
【73】 W. Woo, H. Choo, D.W. Brown and Z. Feng, 〝Influence of the tool
pin and shoulder on microstructure and natural aging kinetics in a
friction-stir-processed 6061-T6 aluminum alloy〞, Metallurgical and Materials
Transactions, 38A (2007) 69-76.
【74】 J.W. Pew, T.W. Nelson and C.D. Sorensen, 〝Understanding the
material flow path of friction stir welding process using unthreaded tools〞,
Science and Technology of Welding and Joining, 12 (2007)
341-347.
【75】 K. Elangovan and V. Balasubramanian, 〝Influences of pin profile and
rotational speed of the tool on the formation of friction stir processing zone in
AA2219 aluminium alloy〞, Materials Science and Engineering, 459A
(2007) 7-18.
【76】 K. Elangovan and V. Balasubramanian, 〝Influences of tool pin profile
and welding speed on the formation of friction stir processing zone in AA2219
aluminium alloy〞, Journal of Materials Processing Technology, 200 (2008)
163-175.
【77】 H. Badarinarayan, Q. Yang and S. Zhu, 〝Effect of tool geometry on
static strength of friction stir spot-welded aluminum alloy〞, International
Journal of Machine Tools & Manufacture, 49 (2009) 142-148.
【78】 H. Badarinarayan, Y. Shi, X. Li and K. Okamoto, 〝Effect of tool
geometry on hook formation and static strength of friction stir spot welded
aluminum 5754-O sheets〞, International Journal of Machine Tools &
Manufacture, 49 (2009) 814-823.
【79】 W. Yuan, R.R. Mishra, S. Webb, Y.L. Chen, B.Carlson, D.R.
Herling and G.J. Grant, 〝Effect of tool design and process parameters on
properties of Al alloy 6016 friction stir spot weld〞,Journal of Materials
Processing Technology, 211 (2011) 972-977.
【80】 W.M. Thomas, K.I. Johnson and C.S. Wiesner, 〝Friction stir
welding-recent developments in tool and process technologies〞, Advanced
Engineering Materials, 5 (2003) 485-490.
【81】 D.M. Rodrigues, A. Loureiro, C. Leitao, R.M. Leal, B.M.
Chaparro and P. Vilaca, 〝Influence of friction stir welding
parameters on the microstructural and mechanical properties of
AA 6016-T4 thin welds〞, Materials and Design, 30( 2009)
1913-192.
【82】 R.M. Leal, C. Leitao, A. Loureiro, D.M. Rodrigues and P. Vilac,
〝Material flow in heterogeneous friction stir welding of thin
aluminium sheets: Effect of shoulder geometry 〞, Materials
Science and Engineering, 498A (2008) 384–391.
【83】 Y. Uematsu, K. Tokaji, Y. Tozaki, T. Kurita and S. Murata,
〝Effect of re-filling probe hole on tensile failure and fatigue behaviour of
friction stir spot welded joints in Al–Mg–Si alloy〞, International Journal
of Fatigue, 30 (2008) 1956-1966.
【84】 T. Rosendo, B. Parra, M.A.D. Tier, A.A.M. da Silva, J.F. dos
Santos, T.R. Strohaecker and N.G. Alcantara, 〝Mechanical and
microstructural investigation of friction spot welded AA6181-T4 aluminium
alloy〞, Materials and Design, 32 (2011) 1094–1100.
【85】 S.J. Kim, C.G. Lee, H.N. Han, S.H. Kang and K.H. Oh, 〝Surface
friction welding of thin metal sheets〞, Key Engineering Materials,
345-346 (2007) 1477-1480.
【86】 R.M. Leal, C. Leitao, A. Loureiro, D.M. Rodrigues and P. Vilac,
〝Material flow in heterogeneous friction stir welding of thin
aluminium sheets: Effect of shoulder geometry 〞, Materials
Science and Engineering, 498A (2008) 384–391.
【87】 D.M. Rodrigues, A. Loureiro, C. Leitao, R.M. Leal, B.M.
Chaparro and P. Vilaca, 〝Influence of friction stir welding
parameters on the microstructural and mechanical properties of
AA 6016-T4 thin welds〞, Materials and Design, 30( 2009)
1913-192.
【88】 D. Bakavos and P.B. Prangnell, 〝Effect of reduced or zero pin length
and anvil insulation on friction stir spot welding thin gauge 6111 automotive
sheet〞, Science and Technology of Welding and Joining, 14
( 2009) 743-756.
【89】 D.H. Choi, B.W. Ahn, C.Y. Lee, Y.M. Yeon, K. Song and
S.B.Jung, 〝Effect of pin shapes on joint characteristics of friction stir spot
welded AA5J32 sheet 〞, Materials Transactions, 51 ( 2010 )
1028-1032.
【90】 Y. Tozaki, Y. Uematsu and K. Tokaji, 〝A newly developed tool
without probe for friction stir spot welding and its performance〞, Journal of
Materials Processing Technology, 210 ( 2010) 844-851.
【91】 D. Bakavos, Y. Chen, L. Babout and P. Prangnell, 〝Material
interactions in a novel pinless tool approach to friction stir spot welding thin
Aluminum Sheet〞,Metallurgical and Materials Transactions, 42A
( 2011) 1266-1282.
【92】 林高弘, 〝摩擦攪拌焊接過程熱傳與材料流動之數值研究〞,
中山大學機械與機電工程研究所碩士論文,民國99 年,第3∼ 9
頁。
【93】 Bharat Bhushan, 〝Principles and application of tribology〞,6.4 Friction
of materials, P.397.
【94】 邱源成, 李榮宗, 〝摩擦攪拌熔接之檢測裝置〞, 中華民國發
明專利I298029 號。
【95】 林耀隆, 〝摩擦攪拌熔接過程之作用力和攪拌能量之實驗研
究〞, 中山大學機械與機電工程研究所碩士論文, 民國95 年,
第22∼ 26 頁。
【96】 唐文聰,〝鋼鐵材料選用要領〞,全華書局,民國85 年,第14
∼ 16,95~101 頁。
【97】 黃廷合, 〝機械製造( 上) 〞, 全華書局, 民國86 年, 第176
頁。
【98】 大西清著張 兆 豐 主 編 , 〝 機 械 設 計 製 圖 要 覽 〞 , 臺 隆 書 局 編
譯, 民國72 年, 表5.83。
【99】 Incropera, DeWitt, Bergmann and Lavine, 〝Fundamentals of heat and
mass transfer〞,Wiley Asia Student Edition, Sixth Edition, A-3~A-4.
【100】鄭宇哲,〝摩擦攪拌銲接之金屬接合機制探討〞,中山大學機械
與機電工程研究所碩士論文, 民國97 年, 第56∼ 61 頁。
【101】D.-A. Wang and S.-C. Lee, 〝Microstructures and failure
mechanisms of friction stir spot welds of aluminum 6061-T6
sheets〞,Joumal of Materials Processing Technology, 186 (2007)
291-297.
【102】K. Elangovan and V. Balasubramanian, 〝Influence of post-weld heat
treatment on tensile properties of friction stir-welded AA6061 aluminum alloy
joints〞,Materials Characterization, 59 (2008) 1168-1177.
【103】A. Oosterkamp, L.D. Oosterkamp and A. Nordeide, 〝'Kissing
bond' phenomena in solid-state welds of aluminum alloys 〞,
Welding Joumal , 83 (2004) 225-231.
【104】Y.S. Sato, H. Takauchi, S.H.C. Park and H. Kokawa,
〝Characteristics of the kissing-bond in friction stir welded Al
alloy 1050〞, Materials Science and Engineening , 405A (2005)
333-338.
【105】邱源成教授編, 〝磨潤學〞, 第101∼ 118 頁。
【106】程金保, 田潮訓, 游毓珈, 〝摩擦攪拌銲接對Al-Cu 系2024 合
金接合特性之研究〞, 三重商工學報, 民國94 年, 第151∼ 152
頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code