Responsive image
博碩士論文 etd-0823110-141203 詳細資訊
Title page for etd-0823110-141203
論文名稱
Title
在多載波系統中具有低複雜度之降低峰值對平均功率比值方法
Low-Complexity PAPR Reduction Schemes for Multi-Carrier Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-30
繳交日期
Date of Submission
2010-08-23
關鍵字
Keywords
完美序列、正交分頻多重進接系統、選擇性映射、正交分頻多工系統、多輸入多輸出、空頻區塊碼、峰值對平均功率比值、轉換向量
Peak-to-Average Power Ratio (PAPR), Selected Mapping (SLM), Space-Frequency Block Coding (SFBC), Multiple-Input Multiple-Output (MIMO), Orthogonal Frequency Division Multiple Access (OFDMA), Conversion Vectors, Perfect Sequence, Orthogonal Frequency Division Multiplexing (OFDM)
統計
Statistics
本論文已被瀏覽 5802 次,被下載 6
The thesis/dissertation has been browsed 5802 times, has been downloaded 6 times.
中文摘要
在正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM) 系統中,選擇性映射(Selected Mapping, SLM) 是常被用來降低峰值對平均功率比值(Peak-to-Average Power Ratio, PAPR) 的方法,傳統選擇性映射之運算複雜度可藉由使用轉換向量(Conversion Vectors) 取代反快速複利葉轉換(Inverse Fast Fourier Transform,IFFT) 來降低。為了維持相位旋轉向量(Phase Rotation Vectors) 的每個元素(Element)是相同大小,轉換向量必須具有完美序列(Perfect Sequence) 的型式。在這個研究中提出了三種新的完美序列,每種都是由一些基底向量(Base Vectors) 以及其循環位移(Cyclic Shift) 所組成。基於這些完美序列獨特的結構,三個新的低複雜度之選擇性映射法被提出,其降低峰值對平均功率比值之效能略差於傳統選擇性映射法,但這三個方法都具有非常低的運算複雜度。由於這些方法無法被使用於正交分頻多重進接(Orthogonal Frequency Division Multiple Access, OFDMA) 系統,在這個研究中針對使用交錯式(Interleaved) 或子頻帶式(Subband) 的正交分頻多重進接系統上鍊端(Uplink),也提出了一個低複雜度的降低峰值對平均功率比值方法,提出的方法只需要使用一個反快速複利葉轉換。這個方法的降低峰值對平均功\率比值效能只略差於傳統選擇性映射法,但其具有非常低的運算複雜度。此外,由於使用空頻區塊碼(Space-Frequency Block Coding, SFBC) 之多輸入多輸出(Multiple-Input Multiple-Output, MIMO)正交分頻多工系統對時間選擇性衰減通道(Time Selective Fading Channel) 有不錯的效能,使其廣為人知,然而其所需使用之反快速複利葉轉換之個數與天線數相同,使其具有非常高的運算複雜度,此外此系統也有高峰值對平均功率比值的問題。因此,本研究提出一個在使用Alamouti 編碼之空頻區塊碼多輸入多輸出正交分頻系統中具有低複雜度的降低峰值對平均功率比方法,延伸這個方法得到兩個可用於任意天線數量與編碼方式之低複雜度傳送端架構,此架構是利用傳送訊號在時域之特性來降低複雜度。此外,基於所提出的傳送端架構亦設計了一個降低峰值對平均功\率比值的方法,所提出的方法與傳統選擇性映射法幾乎一樣好,但具有非常低的複雜度。
Abstract
Selected mapping (SLM) schemes are commonly employed to reduce the peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. It has been shown that the computational complexity of the traditional SLM scheme can be substantially reduced by adopting conversion vectors obtained by using the inverse fast Fourier transform (IFFT) of the phase rotation vectors in place of the conventional IFFT operations. To ensure that the elements of these phase rotation vectors have an equal magnitude, conversion vectors should have the form of a perfect sequence. This study firstly presents three novel classes of perfect sequence, each of which comprises certain base vectors and their cyclically shifted versions. Three novel low-complexity SLM schemes are then proposed based upon the unique structures of these perfect sequences. It is shown that while the PAPR reduction performances of the proposed schemes are marginally poorer than that of the traditional SLM scheme, the three schemes achieve a substantially lower computational complexity. Since the three proposed PAPR reduction schemes cannot be utilized in the orthogonal frequency division multiple access (OFDMA) system. A low-complexity scheme for PAPR reduction in OFDMA uplink systems using either an interleaved or a sub-band sub-carrier assignment strategy is also proposed in the second part of this study. The proposed scheme requires just one IFFT operation. The PAPR reduction performance of the proposed scheme is only marginally poorer than that of the traditional SLM scheme. However, the proposed schemes have significantly lower computational complexities. Besides, multiple-input multiple-output (MIMO) OFDM systems with space-frequency block coding (SFBC) are well-known for their robust performance in time selective fading channels. However, SFBC MIMO-OFDM systems have a high computational complexity since the number of IFFTs required scales in direct proportion to the number of antennas at the transmitter. Furthermore, SFBC MIMO-OFDM systems have a high PAPR. Accordingly, a low-complexity PAPR reduction scheme for SFBC MIMO OFDM systems with the Alamouti encoding scheme is proposed in this study. Extending this scheme obtains two low-complexity transmitter architectures for SFBC MIMO-OFDM systems with a general encoding matrix and an arbitrary number of transmitter antennas. The proposed schemes achieve a significant reduction in computational complexity by fully exploiting the time-domain signal properties of the transmitted signal. In addition, a PAPR reduction scheme is presented based on the proposed transmitter schemes. It is shown that the PAPR reduction performance of the proposed scheme is almost as good as that of the traditional SLM scheme, but is achieved with a substantially lower computational complexity.
目次 Table of Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Low-Complexity PAPR Reduction Schemes for OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 System Model and Review of the SLM Scheme by Wang and Ouyang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Structures of Perfect Sequences/Conversion Vectors Adopted in Current Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Class I Perfect Sequences/Conversion Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Class II Perfect Sequences/Conversion Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Class III Perfect Sequences/Conversion Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Proposed Low-Complexity SLM Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Proposed Scheme I (PS I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Proposed Scheme II (PS II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Proposed Scheme III (PS III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Analysis of Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 A Low-Complexity PAPR Reduction Scheme for OFDMA Uplink Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 The Proposed Low-Complexity Scheme for PAPR Reduction in OFDMA Uplink Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Interleaved OFDMA Uplink System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Sub-band OFDMA Uplink System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Enhancement of PAPR Reduction Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Analysis of Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Interleaved OFDMA Uplink System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Sub-band OFDMA Uplink System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 A Low-Complexity PAPR Reduction Scheme for SFBC MIMO-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Time Domain Signal Properties for SFBC MIMO-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 The Proposed Low-Complexity PAPR Reduction Scheme for SFBC MIMO-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Analysis of Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5 Low Complexity Transmitter Architectures and Their Application to PAPR Reduction in SFBC MIMO-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 Encoding Schemes and System Models for SFBC MIMO-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Time-Domain Signal Properties for SFBC MIMO-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Low Complexity Transmitter Architectures for SFBC MIMO-OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Proposed Low-Complexity Transmitter Architecture I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Proposed Low-Complexity Transmitter Architecture II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 The Proposed Low Complexity PAPR Reduction Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Analysis of Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5.1 Proposed Low-Complexity Transmitter Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5.2 Proposed PAPR Reduction Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Appendix A Proof of the Perfect Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Appendix B Solutions for the Constant-Gain-Magnitude Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
參考文獻 References
[1] Digital video broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television, ETSI, EN 300 744, 1.3.1 ed., 2000.
[2] Radio broadcasting system: Digital audio broadcasting (DAB) to mobile, portable and fixed receivers, ETSI, ETS 300 401, 1.3.2 ed., 2000.
[3] IEEE Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band, IEEE Std. 802.11a-1999, Sep. 1999.
[4] IEEE Standard for Local and Metropolitan Area Networks, IEEE Std 802.16-2004, Oct. 2004.
[5] D.Wulich, “Peak factor in orthogonal multicarrier modulation with variable levels,” Electron. Lett., vol. 32, no. 20, pp. 1859-1860, Sep. 1996.
[6] X. Li and L. J. Cimini Jr., “Effects of clipping and filtering on the performance of OFDM,” IEEE Commun. Lett., vol. 2, no. 5, pp. 131-133, May 1998.
[7] D.Wulich and L. Goldfeld, “Reduction of peak factor in orthogonal multicarrier modulation by amplitude limiting and coding,” IEEE Trans. Commun., vol. 47, no. 1, pp. 18-21, Jan. 1999.
[8] A. E. Jones, T.A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission scheme,” Electron. Lett., vol. 30, no. 22, pp. 2098-2099, Dec. 1994.
[9] J. A. Davis and J. Jedwab, “Peak-to-mean power control and error correction for OFDM transmission using Golay sequences and Reed-Muller codes,” Electron. Lett., vol. 33, no. 4, pp. 267-268, Feb. 1997.
[10] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes,” IEEE. Trans. Info. Theory, vol. 45, no. 7, pp. 2397-2417, Nov. 1999.
[11] K. Patterson, “Generalized Reed-Muller codes and power control in OFDM modulation,” IEEE. Trans. Info. Theory, vol. 46, no. 1, pp. 104-120, Jan. 2000.
[12] V. Tarokh and H. Jafarkhani, “On the computation and reduction of the peakto-average power ratio in multicarrier communication,” IEEE Trans. Commun., vol. 48, no. 1, pp. 37-44, Jan. 2000.
[13] K. G. Paterson and V. Tarokh, “On the existence and construction of good codes with low peak-to-average power ratios,” IEEE Trans. Info. Theory, vol. 46, no. 6, pp. 1974-1987, Sep. 2000.
[14] C. V. Chong and V. Tarokh, “A simple encodable/decodable OFDM QPSK code with low peak-to-mean envelope power ration,” IEEE. Trans. Info. Theory, vol. 47, no. 7, pp. 3025-3029, Nov. 2001.
[15] M. Sharif and B. Hassibi, “Existence of codes with constant PMEPR and realted design,” IEEE Trans. Signal Process., vol. 52, no. 10, pp. 2836-2846, Oct. 2004.
[16] S. Litsyn and A. Shpunt, “A balancing method for PMEPR reduction in OFDM signals,” IEEE Trans. Commun., vol. 55, no. 4, pp. 683-691, Apr. 2007.
[17] M. Sharif, V. Tarokh, and B. Hassibi, “Peak power reduction of OFDM signals with sign adjustment,” IEEE Trans. Commun., vol. 57, no.7, pp. 2160-2166, Jul. 2009.
[18] R.W. B‥auml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, no. 22, pp. 2056-2057, Oct. 1996.
[19] M. Breiling, S. H. M‥uller, and J. B. Huber, “SLM peak-power reduction with explicit side information,” IEEE. Commun. Lett., vol. 5, pp. 239-241, Jun. 2001.
[20] S. H. Han and J. H. Lee, “Modified selected mapping technique for PAPR reduction of coded OFDM signal,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 335-341, Sep. 2004.
[21] C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 53, no. 12, pp. 4652-4660, Dec. 2005.
[22] S.-J. Heo, H.-S. Noh, J.-S. No, and D.-J. Shin, “A modified SLM scheme with low complexity for PAPR reduction of OFDM systems,” IEEE Trans. Broadcast., vol. 53, no. 4, pp. 804-808, Dec. 2007.
[23] A. Ghassemi and T. A. Gulliver, “Partial selective mapping OFDM with low complexity IFFTs,” IEEE Commun. Lett., vol. 12, no. 1, pp. 4-6, Jan. 2008.
[24] S. Y. Le Goff, B. K. Khoo, C. C. Tsimenidis, and B. S. Sharif, “A novel selected mapping technique for PAPR reduction in OFDMsystems,” IEEE Trans. Commun., vol. 56, no. 11, pp. 1775-1779, Nov. 2008.
[25] C.-P. Li, S.-H. Wang, K.-S. Lee, and C.-L. Wang, “Novel low-complexity SLM schemes for PAPR reduction in OFDM systems,” in Proc. IEEE Global Commun. Conf. (Globecom 2008), 30 Nov. - 4 Dec., 2008.
[26] L. Yang, K. K. Soo, Y. M. Siu, and S. Q. Li, “A low complexity selected mapping scheme by use of time domain sequence superposition technique for PAPR reduction in OFDM system,” IEEE Trans. Broadcast., vol. 54, no. 4, pp. 821-824,

Dec. 2008.
[27] S. H. M‥uller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequence,” Electron. Lett., vol. 33, no. 5, pp. 368-369, Feb. 1997.
[28] S. G. Kang, J. G. Kim, and E. K. Joo, “A novel subblock partition scheme for partial transmit sequence OFDM,” IEEE Trans. Broadcast., vol. 45, no. 3, pp. 333-338, Sep. 1999.
[29] L. J. Cimini Jr. and N. R. Sollenberger, “Peak-to-average power ration reduction of an OFDM signal using partial transmit sequences,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86-88, Mar. 2000.
[30] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal,” Electron. Lett., vol. 36, no. 14, pp. 1226-1228, Jul. 2000.
[31] C. Tellambura, “Improved phase factor computation for the PAR reduction of an OFDM signal using PTS,” IEEE Commun. Lett., vol. 5, no. 4, pp. 135-137, Apr. 2001.
[32] W. Henkel and V. Azis, “Partial transmit sequences and trellis shaping,” in Proc. 5th Int. ITG Conf. Source and Channel Coding (SCC), Jan. 14-16, 2004.
[33] D.-W. Lim, S.-J. Heo, J.-S. No, and H.-B. Chung, “A new PTS OFDM scheme with low complexity for PAPR reduction,” IEEE Trans. Broadcast., vol. 52, no. 1, pp. 77-82, Mar. 2006.
[34] Y.-R. Tsai and S.-J. Huang, “PTS with non-uniform phase factors for PAPR reduction in OFDM systems,” IEEE Commun. Lett., vol. 12, no. 1, pp. 20-22, Jan. 2008.
[35] A. Ghassemi and T. A. Gulliver, “A low-complexity PTS-based radix FFT method for PAPR reduction in OFDM systems,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1161-1166, Mar. 2008.
[36] J. Tellado, “Peak to average power reduction for multicarrier modulation,”Ph.D. dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, Sep. 1999.
[37] W. Henkel and V. Zrno, “PAR reduction revisited: an extension to Tellado's method,” in Proc. 6th Int. OFDM Workshop, Sep. 18-19, 2001, pp. 31-1-31-6.
[38] K. F. Lee and D. B. Williams, “A space-frequency transmitter diversity technique for OFDM systems,” in Proc. IEEE Global Commun. Conf. (Globecom 2000), vol. 3, 27 Nov. - 1 Dec., 2000, pp. 1473-1477.
[39] H. Lee and M. P. Fitz, “Unitary peak power reduction in multiple transmit antennas,” IEEE Trans. Commun., vol. 56, no. 2, pp. 234-244, Feb. 2008.
[40] Z. Latinovi’c and Y. Bar-Ness, “SFBC MIMO-OFDM peak-to-average power ratio reduction by polyphase interleaving and inversion,” IEEE Commun. Lett., vol. 10, no. 4, pp. 266-268, Apr. 2006.
[41] G. Wunder and H. Boche, “Peak value estimation of bandlimited signals from their samples, noise enhancement, and a local characterization in the neighborhood of an extremum,” IEEE Trans. Signal Process., vol. 51, no. 3, pp. 771-

780, Mar. 2003.
[42] S. Litsyn and A. Yudin, “Discrete and continuous maxima in multicarrier communication,”IEEE Trans. Inform. Theory, vol. 51, no. 3, pp. 919-928, Mar. 2005.
[43] C. Tellambura, “Computation of the continuous-time PAR of an OFDM signal with BPSK sub-carriers,” IEEE Commun. Lett., vol. 5, no. 5, pp. 185-187, May 2001.
[44] R. L. Frank and S. Zadoff, “Phase shift pulse codes with good periodic correlation properties,” IRE Trans. Inform. Theory, vol. IT-8, pp. 381-382, Oct. 1962.
[45] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inform. Theory, vol. IT-18, pp. 531-532, Jul. 1972.
[46] C.-P. Li and W.-C. Huang, “A constructive representation for the Fourier dual of the Zadoff-Chu sequences,” IEEE Trans. Inform. Theory, vol. 53, no. 11, pp. 4221-4224, Nov. 2007.
[47] G. T. Zhou and L. Peng, ”Optimality condition for selected mapping in OFDM,” IEEE Trans. Signal Process., vol. 54, no. 8, pp. 3159-3165, Aug. 2006.
[48] S. M. Alamouti, “A simple transmit diversity technique for wireless commuications,”IEEE J. Select. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[49] O. Tirkkonen, A. Boariu, and A. Hottinen, “Minimal nonorthogonality rate 1 space-time block code for 3+ tx antennas,” in Proc. IEEE Int. Symp. Spread Spectr. Techniques and Applicat. (ISSSTA 2000), Sep. 2000, pp. 429-432.
[50] H. Jafarkhani, and A. R. Calderband, “A quasi-orthogonal space-time block code,” IEEE Trans. Commun., vol. 49, no. 1, pp. 1-4, Jan. 2001.
[51] V. Tarokh, H. Jafarkhani, and A. R. Calderband, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1456-1467, Jul. 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.217.228
論文開放下載的時間是 校外不公開

Your IP address is 3.135.217.228
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code