博碩士論文 etd-0827110-162916 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 林昱宏(Yu-Hung Lin) 電子郵件信箱 E-mail 資料不公開
畢業系所 電機工程學系研究所(Electrical Engineering)
畢業學位 碩士(Master) 畢業時期 99學年第1學期
論文名稱(中) 在VANET 網路上針對車輛間通訊
建立叢集為基礎的TDMA 系統  
論文名稱(英) A Cluster-based TDMA System for Inter-Vehicle
Communications on VANET
檔案
  • etd-0827110-162916.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內外都一年後公開

    論文語文/頁數 中文/68
    統計 本論文已被瀏覽 5046 次,被下載 1853 次
    摘要(中) 在本論文中,我們提出一個CBT (Cluster-based TDMA)的機制,作為行動車輛在Intra-cluster與Inter-cluster的通訊方式,此機制可以解決車載式網路 (VANET)在同時傳輸封包時會產生碰撞的問題。在Intra-cluster的部分,我們藉由隨機選取0或1的方式來選出VC (VANET Coordinator),在VC選出之後,VNs使用隨機的方式選取不同的time slot來提出BR (Bandwidth Requests),如果有兩個以上的VN選擇同一個time slot提出BR,則會發生碰撞,發生碰撞的VNs繼續在下一個TDMA frame提出BR直到成功。在VC根據BR完成排程之後,所有的VN就可以使用指定的time slots來傳送data。在Inter-cluster的部分,當兩個Clusters互相接近時,VCs為了重新排程,必須互相交換彼此的SAM (Slot Allocation MAP),我們採用的方式是VCs藉由隨機選取0或1的方式來決定是否傳出SAM,等到某一VC已經先成功傳出SAM,則另一VC根據收到的SAM來重新安排time slots。
    在Intra-cluster的部分,我們求出選出VC需要的平均time slot數、所有VNs提出BR需要的平均time slot數,在Inter-cluster的部分,我們求出成功傳出SAM的平均time slot數、兩個VCs廣播出SAM所需要的time slot數。除此之外,我們還求出傳送data前平均需要等待的time slot數。我們撰寫C++模擬程式來驗證推導的數學公式是否正確,經由比較數學分析與模擬的結果,我們發現兩者在提出BR的部分有較大的差距,其原因在於使用數學分析時,我們無法知道VNs是選擇哪幾個time slots來提出BR,其他部分的數學分析都與模擬結果接近。
    摘要(英) In this Thesis, we propose a Cluster-based TDMA (CBT) scheme for Vehicular Ad-hoc Networks (VANET). In the CBT, the collision problems can be solved when packets are transmitted at the same time.
    In the Intra-cluster communications, the VANET Coordinator (VC) is determined by randomly choosing a number of zero or one. Other VANET Nodes (VNs) then randomly select different time slots to transmit their Bandwidth Requests (BRs). If more than two VNs choose the same slots for BRs, collision will occur. The failed VNs will continue to issue BRs in the next TDMA frames. After the time slots are scheduled by VC, all VNs can use the designated time slots to send data. In the Inter-cluster communications, when two clusters are approaching to each other, two VCs must exchange Slot Allocation MAP (SAM) using the random zero-or-one scheme. The VCs successfully receive SAM must reschedule the time slots.
    For the purpose of performance evaluation, we calculate the average time slots of selecting VC and the average time slots required for successful BRs. We also compute the average time slots required for successfully transmitting SAM and the average time slots required for broadcasting SAM to all VNs. Finally, we calculate the average time slots required for waiting before data transmission. To validate the mathematical results, we perform a simulation written in C++. When comparing the mathematical results to the simulation results, we observe that in the average time slots required for BR, the former is larger than the latter. This is because in the mathematical equations it is difficult to specify which time slots are used by VNs to transmit BRs. However, the rest of performance comparisons, the two results are very close.
    關鍵字(中)
  • 車載式網路
  • 關鍵字(英)
  • Inter-cluster
  • Intra-cluster
  • TDMA
  • Cluster-based
  • Mini-slot
  • VANET
  • 論文目次 目錄
    第一章 導論 1
    1.1 研究動機 1
    1.2 研究方法 2
    1.3 章節介紹 4
    第二章 車載式通訊網路 5
    2.1 V2V與V2R 6
    2.2 IEEE 802.11p 6
    2.3 TDMA 7
    2.4 Cluster 8
    2.5 VANET MAC的相關研究 9
    2.5.1 VANET MAC 9
    第三章 Cluster-Based TDMA 15
    3.1 Intra-Cluster/Inter-Cluster的基礎架構 15
    3.2 TDMA Frame與MAC Frame Format 16
    3.2.1 TDMA Frame的設計 17
    3.2.2 MAC Frame Format 18
    3.3 CBT的演算法 21
    3.3.1 Intra-Cluster 21
    3.3.2 Inter-Cluster 26
    第四章 數學分析與模擬結果 31
    4.1數學分析模式的建立 31
    4.1.1 Intra-cluster的數學分析 32
    4.1.2 Inter-cluster的數學分析 36
    4.2數學分析與模擬驗證 38
    4.2.1 Intra-cluster 38
    4.2.2 Inter-cluster 42
    第五章 結論與未來工作 43
    5.1 結論 43
    5.2 未來工作 44
    參考文獻 (REFERENCES) 46
    ACRONYMS 51
    索引 (INDEX) 52
    參考文獻 [1] “IEEE Standard for Information Technology-Telecommunications and Information Exchange between Systems-Local and Metropolitan Area Networks-Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments,” IEEE Computer Society, Jul. 2010.
    [2] Y. L. Morgan, “Notes on DSRC & WAVE Standards Suite: Its Architecture, Design, and Characteristics,” IEEE Communications Surveys & Tutorials, vol. PP, no. 99, pp. 1-15, Sep. 2010.
    [3] S. K. Tseng, B. J. Kang, K. C. Lin, and T. H. Su, “An Introduction to IEEE 1609 for Wireless Access in Vehicular Environments,” ICL Technical Journal, no. 130, pp. 130-135, Dec. 2009.
    [4] “Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services,” IEEE Unapproved Draft Std P1609.3/D5.0, Mar. 2010.
    [5] DSRC website, http://www.leearmstrong.com/DSRC/DSRCHomeset.htm.
    [6] J. Zhu and S. Roy, “MAC for Dedicated Short Range Communications in Intelligent Transport System,” IEEE Communications Magazine, vol. 41, no. 12, pp. 60-67, Dec. 2003.
    [7] C. M. Huang, C. C. Yang, and H. D. Huang, “An Effective Channel Utilization Scheme for IEEE 1609.4 Protocol,” IEEE Conference on Ubiquitous Information Technologies and Applications, Dec. 2009.
    [8] H. Su and X. Zhang, “Clustering-Based Multichannel MAC Protocols for QoS Provisionings over Vehicular Ad Hoc Networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3309-3323, Nov. 2007.
    [9] T. K. Mak, K. P. Laberteaux, R. Sengupta, and M. Ergen, “Multichannel Medium Access Control for Dedicated Short-Range Communications,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1, pp. 349-366, Jan. 2009.
    [10] B. Shrestha, D. Niyato, Z. Han, and E. Hossain, “Wireless Access in Vehicular Environments Using BitTorrent and Bargaining,” IEEE Conference on Global Telecommunications Conference, Nov. 2008.
    [11] F. Yu and S. Biswas, “Self-Configuring TDMA Protocols for Enhancing Vehicle Safety with DSRC Based Vehicle-to-Vehicle Communications,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 8, pp. 1526-1537, Oct. 2007.
    [12] C. Wang, B. Li, and L. Li, “A New Collision Resolution Mechanism to Enhance the Performance of IEEE 802.11 DCF,” IEEE Transactions on Vehicular Technology, vol. 53, no. 4, pp. 1235-1246, Jul. 2004.
    [13] B. S. Kim, Y. Fang, T. F. Wong, and Y. Kwon, “Throughput Enhancement through Dynamic Fragmentation in Wireless LANs,” IEEE Transactions on Vehicular Technology, vol. 54, no. 4, pp. 1415-1425, Jul. 2005.
    [14] J. Zhao and G. Cao, “VADD: Vehicle-Assisted Data Delivery in Vehicular Ad Hoc Networks,” IEEE Transactions on Vehicular Technology, vol. 57, no. 3, pp. 1910-1922, May 2008.
    [15] P. Ferre, A. Doufexi, J. C. How, A. R. Nix, and D. R. Bull, “Robust Video Transmission over Wireless LANs,” IEEE Transactions on Vehicular Technology, vol. 57, no. 4, pp. 2596-2602, Jul. 2008.
    [16] M. Leonoble, K. Ito, Y. Tadokoro, M. Takanashi, and K. Sanda, “Header Reduction to Increase the Throughput in Decentralized TDMA-based Vehicular Networks,” IEEE Conference on Vehicular Networking, Oct. 2009.
    [17] K. Saito and M. Nakayama, “The Spatial Reuse Slot Allocation with Reallocating Neighbor Links in the TDMA-Based Wireless Mesh Network,” IEEE Conference on Vehicular Technology, Sep. 2007.
    [18] J. Du and W. Shi, “App-MAC: An Application-Aware Event-Oriented MAC Protocol for Multimodality Wireless Sensor Networks,” IEEE Transactions on Vehicular Technology, vol. 57, no. 6, pp. 3723-3731, Nov. 2008.
    [19] Y. Hung and T. M. Lok, “Channel Assignment and Time Sharing for Multiple Access in Multicarrier Communication Systems,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 2095-2107, Jul. 2007.
    [20] M. Fuchs, G. D. Galdo, and M. Haardt, “Low-Complexity Space–Time–Frequency Scheduling for MIMO Systems with SDMA,” IEEE Transactions on Vehicular Technology, vol. 56, no. 5, pp. 2775-2784, Sep. 2007.
    [21] T. A. Kostas, A. H. Haddad, and C. C. Lee, “Performance Analysis of A Dynamic Bandwidth Allocation Algorithm for A Mixed Traffic TDMA Network,” IEEE Transactions on Vehicular Technology, vol. 56, no. 4, pp. 2306-2320, Jul. 2007.
    [22] R. T. Goonewardene, F. H. Ali, and E. Stipidis, “Robust Mobility Adaptive Clustering Scheme with Support for Geographic Routing for Vehicular Ad Hoc Networks,” IEEE Journals on Intelligent Transport Systems, vol. 3, no. 2, pp. 148-158, Nov. 2009.
    [23] Z. Y. Zaydoun and S. M. Mahmud, “Toward Strongly Connected Clustering Structure in Vehicular Ad Hoc Networks,” IEEE Conference on Vehicular Technology, Sep. 2009.
    [24] Z. Wang, L. Liu, M. C. Zhou, and N. Ansari, “A Position-Based Clustering Technique for Ad Hoc Intervehicle Communication,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 38, no. 2, pp. 201-208, Mar. 2008.
    [25] X. Zhu, L. Shen, and T. S. P. Yum, “Hausdorff Clustering and Minimum Energy Routing for Wireless Sensor Networks,” IEEE Transactions on Vehicular Technology, vol. 58, no. 2, pp. 990-997, Feb. 2009.
    [26] Y. C. Chu and N. F. Huang, “Delivering of Live Video Streaming for Vehicular Communication Using Peer-to-Peer Approach,” IEEE Conference on Mobile Networking for Vehicular Environments, May 2007.
    [27] C. Guo, R. Hekmat, and P. Pawelczak, “Analysis and Optimization of Energy Efficient Cluster Forming for Wireless Sensor Networks,” IEEE Conference on Vehicular Technology, Sep. 2007.
    [28] P. Fan, “Improving Broadcasting Performance by Clustering with Stability for Inter-Vehicle Communication,” IEEE Conference on Vehicular Technology, Apr. 2007.
    [29] S. U. Hashmi, J. H. Sarker, H. T. Mouftah, and N. D. Georganas, “An Efficient MAC Protocol with Correlated Connection Arrival and Variable Slot Assignment in Wireless Sensor Networks,” IEEE Conference on International Communications Conference, May 2010.
    [30] A. Pandey and J. S. Lim, “CTB-MAC: Cluster-Based TDMA Broadcast MAC Protocol for Mobile Ad-Hoc Network,” IEEE Conference on Future Information Technology, May 2010.
    [31] J. Ma, K. Yang, and S. Ou, “Nimble and Adaptive Time-Division Multiple Access Control Phase Algorithm for Cluster-Based Wireless Sensor Networks,” IET Communications, vol. 1, no. 2, pp. 179-186, Sep. 2007.
    [32] H. Su, X. Zhang, and H. H. Chen, “Cluster-Based Multi-Channel Communications Protocols in Vehicle Ad Hoc Networks,” IEEE Journals on Wireless Communications, vol. 13, no. 5, pp. 44-51, Oct. 2006.
    口試委員
  • 謝錫堃 - 召集委員
  • 吳承崧 - 委員
  • 鄭憲宗 - 委員
  • 黃仁竑 - 委員
  • 許蒼嶺 - 指導教授
  • 口試日期 2010-08-19 繳交日期 2010-08-27

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫