博碩士論文 etd-0828112-151224 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 張宇勝 (Yu-Sheng Chang) 電子郵件信箱 E-mail 資料不公開
畢業系所 機械與機電工程學系研究所(Mechanical and Electro-Mechanical Engineering)
畢業學位 碩士(Master) 畢業時期 101學年第1學期
論文名稱(中) 影響自然吸氣PEMFC穩定性原因探討與對策研究    
論文名稱(英) Studies of the Effect and Strategies on the Stability of a Air-breathing PEMFC
檔案
  • etd-0828112-151224.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:使用者自訂權限:校內 2 年後、校外 2 年後公開

    論文語文/頁數 中文/119
    統計 本論文已被瀏覽 5626 次,被下載 1195 次
    摘要(中) 本論文主要研究如何提昇自然吸氣的可攜式質子交換膜氫燃料電池組的性能與穩定性。由於質子交換膜燃料電池(簡稱PEMFC)內部的濕潤度,對電池性能及穩定性有極大的影響,膜內的水可提供氫離子傳導的通道,並避免在長時間操作下質子交換膜過度乾燥,導致交換膜的損壞。因此適當加濕在自然進氣之PEMFC將非常重要。
    傳統的加濕系統體積較大,並不適合使用在可攜式燃料電池上,本論文研發的簡便式加濕系統,採用儲存於電池底部及本身產生的水與反應熱,利用毛細現象將底部水槽的水由棉線或棉布吸收補充到交換膜,並可隨電流的大小,自動調節水的補充率。本論文陰極端利用棉線加濕,可提供中低電流時加濕需求。但較大電流時陰極水散失加快,故在陽極端加入了棉布以增加交換膜水的補充。此被動加濕系統不需額外加入其他設備或能源,僅使用燃料電池反應所產生之熱能,符合可攜式燃料電池構造簡單之原則。
    16-cell電池組採用碳纖維束作為電流收集器,兩片8-cell的陽極擺置在電池組內部,兩片8-cell的陰極則位在電池組外側,直接暴露於大氣中。實驗可採用串並聯方式聯接,已完成的實驗發現,現在加入陰極棉線與陽極棉布加濕後,對電池組長時間穩定操作確實有明顯幫助。
    此含簡單加濕系統的被動式16-cell電池組已成功應用於IPHONE、數位相框、LED燈等設備的連續操作及充電,証明此輕巧的加濕系統確實有助於未來可攜式氫燃料電池的應用。
    摘要(英) The improvement of performance and the maintenance of stability of a portable air-breathing PEMFC are studied in this thesis. The water content within proton exchange membrane affects strongly on the performance and stability of a PEMFC stack, in which water within membrane can form a conduction channel to provide hydrogen ion transferring from anode to cathode. The over-dried condition caused by a long time operation can also be avoided to prevent the membrane from damaging. Thus the proper humidification of a stack is important for a portable air-breathing PEMFC system.
    The traditional humidifier is too bulky to be suitable for portable fuel cells. A simple humidification system developed in this research is making use of the water stored in the stack bottom and the self-generating heat by chemical reaction to drive the passive humidification system of this stack. The water at the bottom of the tank can be sucked with cotton threads in cathode and a piece of cotton cloth by capillary phenomenon and transfer to the membrane of MEA. The cotton threads humidification in cathode is enough in low and middle current density in this study. It is not enough in high current density due to the large water vapor dissipation in the cathode surface, so a cotton cloth in anode is added to increase the evaporating surface to supply water to membrane. This passive humidification system does not need extra energy, and it only employs the heat generated by the cells. The system follows the simple principle, which is always obeyed in a portable fuel cell system.
    A 16-cell HFC stack developed in this research adopts carbon fibers as current collectors. Two pieces of 8-cell anodes is placed in the inner sides of the stack, and the 8-cell cathode is located on external sides, which is exposed directly to the ambient air. The 16-cell can connect in series or parallel. The experimental results show that it is helpful to add cotton threads in cathode and cotton cloth in anode to improve the stability of the 16-cell stack during a the long period operation. The 16-cell HFC stack has succeeded in the operation and charging for an IPhone, digital photo frame, and LED light. The experiments have proved that this type of the lightweight humidification system is helpful in the future portable hydrogen fuel cell applications.
    關鍵字(中)
  • 可攜式
  • 加濕
  • 穩定性
  • 溫度
  • 電池組
  • 關鍵字(英)
  • portability
  • humidifying
  • stability
  • temperature
  • HFC stack
  • 論文目次 目錄
    目錄 ………………………………………………………………………..i
    圖目錄 …………………………….…………………………………...…v
    表目錄 …………………………………………………………….…...…ix
    摘要 .…………………………………………………….………………xi
    Abstract …………….……………………..……………..………....……xiii
    第一章 緒論.................................................................................. 1
    1.1 前言 ................................................................................................ 1
    1.2 燃料電池 ........................................................................................ 1
    1.2.1 燃料電池的種類與特性 ..................................................... 2
    1.3 文獻回顧 ........................................................................................ 4
    1.4 研究目的 ...................................................................................... 11
    第二章 質子交換膜燃料電池理論分析 ................................................... 12
    2.1質子交換膜燃料電池運作原理 ................................................... 12
    2.1.1 反應效率 ........................................................................... 13
    2.1.2 燃料電池理論消耗量 ....................................................... 14
    2.1.3 燃料電池極化現象 ........................................................... 15
    2.2燃料電池基本架構 ....................................................................... 17
    2.2.1 膜極組(MEA) ................................................................... 17
    2.2.2 電流收集板 ....................................................................... 20
    2.3 PEMFC水的傳輸機制 ................................................................. 22
    2.3.1質子傳輸(Proton transport) .......................................... 22
    2.3.2擴散(Diffusion) ............................................................ 24
    2.3.3電滲作用(Electro-osmotic drag) .................................. 25
    2.3.4液壓滲透(Hydraulic permeation) ................................. 26
    2.3.5蒸散機制 ............................................................................ 26
    2.4燃料電池水的生成與蒸發 ........................................................... 27
    2.4.1水通量平衡與交換膜內部含水量的關係........................ 27
    2.4.2質子交換膜燃料電池水的生成與散失計算 ................... 28
    第三章 PEMFC電池組設計與製作......................................................... 30
    3.1被動式加濕可攜式燃料電池設計與構想 ................................... 30
    3.2 MEA製作 ..................................................................................... 30
    3.2.1 質子交換膜預處理 ........................................................... 30
    3.2.2 電極準備 ........................................................................... 31
    3.2.3 MEA製作方式 .................................................................. 32
    3.3 碳纖維束製作 .............................................................................. 33
    3.4 被動式加濕可攜式燃料電池設計與製作 .................................. 36
    3.4.1 電池組規格 ....................................................................... 37
    3.4.2 電池組製作 ....................................................................... 38
    第四章 實驗設備與方法 ........................................................................... 41
    4.1 實驗器材 ...................................................................................... 41
    4.2 實驗設備 ...................................................................................... 42
    4.3 實驗方法 ...................................................................................... 44
    4.4 實驗步驟 ...................................................................................... 44
    4.5電池組測試 ................................................................................... 45
    4.5.1 4-cell電池組 ...................................................................... 45
    4.5.2 16-cell電池組 .................................................................... 46
    4.6 16-cell電池組碳纖維束電阻量測 ............................................... 46
    第五章 結果與討論 ................................................................................... 48
    5.1 實驗條件 ...................................................................................... 49
    5.2 4-cell電池組性能測試 ................................................................. 49
    5.3 4-cell電池組穩定性測試 ............................................................. 50
    5.3.1 加濕方式對穩定性影響 ................................................... 50
    5.3.2 氧化劑流率對穩定性影響 ............................................... 52
    5.4 16-cell性能測試 ........................................................................... 53
    5.5 16-cell電池組穩定性測試 ........................................................... 54
    5.5.1 加濕對穩定性影響 ........................................................... 54
    5.5.2 16-cell電池穩定操作各cell電壓差 ................................ 56
    5.6 實驗結果與理論值的分析探討 .................................................. 56
    5.7可攜式電池應用討論 ................................................................... 59
    第六章 結論 ............................................................................................... 60
    參考文獻 ..................................................................................................... 62
    圖目錄
    圖2.1質子交換膜燃料電池之工作原理示意圖...................................... 66
    圖2.2 燃料電池電壓與電流密度之極化曲線 ......................................... 66
    圖2.3 極化損失示意圖 ............................................................................. 67
    圖2.4 傳統硬質表面雙極板與MEA結合示意圖 .................................. 67
    圖2.5 非均質碳纖維雙極板與MEA結合示意圖 .................................. 68
    圖2.6 典型質子交換膜燃料電池中水傳輸機制..................................... 68
    圖2.7 質子交換膜在不同含水量下的微結構特徵................................. 69
    圖2.8 質子於結點中傳輸示意圖 ............................................................. 69
    圖2.9 質子於載體傳輸機制示意圖 ......................................................... 69
    圖2.10質子於跳躍遷移機制傳輸示意 .................................................... 70
    圖2.11一維PEMFC水通量平衡圖 ......................................................... 70
    圖3.1 MEA材料(電極、質子交換膜、烤盤紙) ..................................... 71
    圖3.2 將電極與質子交換膜固定於烤盤紙上 ......................................... 71
    圖3.3 將MEA放入模具進行熱壓 .......................................................... 72
    圖3.4 拆解後之膜電極組 ......................................................................... 72
    圖3.5 台麗朗公司所生產的24K碳纖維束 ............................................ 73
    圖3.6 自動展開機 ..................................................................................... 73
    圖3.7 (a)展開桿件使碳纖維束均勻散開(b)展開碳纖維束於回收圓 筒回收 ......................................................................................................... 74
    圖3.8 自動上膠機 ..................................................................................... 74
    圖3.9上膠筆頭進行上膠動作(a)上膠中(b)完成一次上膠 .................... 75
    圖3.10完成上膠並貼上固態膠 ................................................................ 75
    圖3.11碳纖維束堆疊材料與模具 ............................................................ 76
    圖3.12碳纖維束堆疊流程 ........................................................................ 76
    圖3.13模具導桿設計與間距 .................................................................... 77
    圖3.14使用鍍銀線將導線與模具固定 .................................................... 77
    圖3.15完成碳纖維堆疊 ............................................................................ 77
    圖3.16(a)將碳纖維魔劇置入熱壓(b)進行熱壓八分鐘 ........................... 78
    圖3.17將熱壓完成碳纖維束定位於切割機上進行對切 ....................... 78
    圖3.18對切完成之碳纖維束 .................................................................... 79
    圖3.19將碳纖維束定位於塑膠板挖槽 .................................................... 79
    圖3.20修整完成之碳纖維束 .................................................................... 80
    圖3.21 16cell電池組加濕棉布棉線位置示意圖(未加上碳纖維束) ...... 80
    圖3.22各部位16cell可攜式燃料電池組件 ............................................ 81
    圖4.1 MEA熱壓模具組 ............................................................................ 81
    圖4.2 碳纖維束熱壓模具 ......................................................................... 82
    圖4.3 電子加熱器 ..................................................................................... 82
    圖4.4 碳纖維束接觸電阻量測系統 ......................................................... 83
    圖4.5 精密電子磅秤 ................................................................................. 83
    圖4.6直流電子負載與量測燃料電池性能與穩定性軟體系統 ............. 84
    圖4.7電源供應器 ...................................................................................... 85
    圖4.8切割機 .............................................................................................. 85
    圖4.9直立裁切機 ...................................................................................... 86
    圖4.10純水製造機 .................................................................................... 86
    圖4.11 4-cell燃料電池組 .......................................................................... 87
    圖4.12 16-cell燃料電池組 ........................................................................ 87
    圖4.13 16-cell電池組,第一組8-cell陽極側,各碳纖維束電阻隨施加壓力之關係 ............................................................................................. 88
    圖4.14 16-cell電池組,第二組8-cell陽極側,各碳纖維束電阻隨施加壓力之關係 ............................................................................................. 88
    圖4.15 16-cell電池組,第三組8-cell陰極側,各碳纖維束電阻隨施加壓力之關係 ............................................................................................. 89
    圖4.16 16-cell電池組,第四組8-cell陰極側,各碳纖維束電阻隨施加壓力之關係 ............................................................................................. 89
    圖4.17 濕潤棉布表面水的蒸發通量隨溫度之變化 .............................. 90
    圖5.1 4-cell電池組總電壓與總功率隨電流變化之關係 ....................... 91
    圖5.2 4-cell每個電池的平均電壓與功率密度隨電流密度之變化,電流密度125、250及357 mA/cm2,為穩定性測試的三個電流 ............. 91
    圖5.3定電流0.35A(電流密度125 mA/cm2 )時,4-cell電池組有無加濕總電壓與溫度隨時間之變化................................................................... 92
    圖5.4定電流0.7A(電流密度250 mA/cm2 )時,4-cell電池組有無加濕總電壓與溫度隨時間之變化 ...................................................................... 92
    圖5.5定電流1A(電流密度357 mA/cm2 )時,4-cell電池組有無加濕總電壓與溫度隨時間之變化 .......................................................................... 93
    圖5.6定電流1A(電流密度357 mA/cm2 )時,4-cell電池組加濕在不同轉速風扇之總電壓與溫度隨時間之變化 ................................................... 93
    圖5.7 16-cell電池組總電壓與總功率隨電流變化之關係 ..................... 94
    圖5.8 16-cell電池組每個電池平均電壓與功率密度隨電流密度之變化,電流密度125、250及357 mA/cm2,為穩定性測試的三個電流...94
    圖5.9定電流0.35A(電流密度125 mA/cm2 )時,16-cell電池組有無加濕,總電壓與溫度隨時間之變化 ............................................................... 95
    圖5.10定電流0.7A(電流密度250 mA/cm2 )時,16-cell電池組有無加濕,總電壓與溫度隨時間之變化 ............................................................... 95
    圖5.11定電流1A(電流密度357 mA/cm2 )時,16-cell電池組有無加濕,總電壓與溫度隨時間之變化 ...................................................................... 96
    圖5.12定電流0.7A(電流密度250mA/cm2)時,16-cell電池組操作90分鐘前後各cell之電壓 ........................................................................ 96
    圖5.13定電流1A(電流密度357mA/cm2)時,16-cell電池組操作90分鐘前後各cell之電壓 ............................................................................. 97
    圖5.14 16-cell電池組溫度與電流關係圖 ............................................... 97
    圖5.15 16-cell電池組蒸發、生成、補充水通量隨電流密度之比較 ... 98
    圖5.16 不同定電流密度下,16-cell電池組無加濕時,總電壓隨時間之變化 ..................................................................................................... 98
    圖5.17不同定電流密度下,16-cell電池組陽極棉布陰極棉線加濕時,總電壓隨時間之變化 ................................................................................. 99
    圖5.18串聯8cell應用於Samsung手機充電使用 ................................. 99
    圖5.19串聯8cell手機充電應用之i-v curve性能曲線 ....................... 100
    圖5.20串聯10cell應用於IPHONE4手機充電使用 ........................... 100
    圖5.21串聯10cell手機充電應用之i-v curve性能曲線 ..................... 101
    表目錄
    表5.1電流密度357 mA/cm2 下,4cell電池組加入不同轉速風扇之電壓與功率衰退比較 .................................................................................. 102
    參考文獻 1. “Critical importance of humidification of the anode in miniature air-breathing polymer electrolyte membrane fuel cells,” Simon Hamel, Luc G. Frechette, Journal of Power Sources, 2011.
    2. “Study of a porous membrane humidification method in polymer electrolyte fuel cells,” K. Ramya, J. Sreenivas, K.S. Dhathathreyan, Journal of hydrogen energy, 2010.
    3. “The effect of humidity on the degradation of Nafion membrane,” Cheng Chen, Thomas F. Fuller, Polymer Degradation and Stability, 2009.
    4. “Passive water management at the cathode of a planar air-breathing proton exchange membrane fuel cell,” T. Fabian, R. O’Hayre, S. Litster, F.B. Prinz, J.G. Santiago, Journal of Power Sources, 2010.
    5. “Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks,” Deryn Chu, Rongzhong Jiang, Journal of Power Sources, 1999.
    6. “Study of water-flooding behaviour in cathode channel of a transparent proton-exchange membrane fuel cell,” F.-B. Weng et al., Journal of Power Sources, 2006.
    63
    7. “Influence of hydrophilicity in micro-porous layer for polymer electrolyte membrane fuel cells,” Minjeh Ahn, Yong-Hun Cho, Yoon-Hwan Cho, Jinho Kim, Namgee Jung, Yung-Eun Sung, Electrochimica acta, 2011.
    8. “Wetting and Absorption of Water Drops on Nafion Films,” Sharonmoyee Goswami, Shannon Klaus, Jay Benziger, Langmuir, 2008.
    9. “Performance enhancement of air-breathing proton exchange membrane fuel cell through utilization of an effective self-humidifying platinum–carbon catalyst,” Chee Kok Poh, Zhiqun Tian, Narissara Bussayajarn, Zhe Tang, Fabing Su, San Hua Lim, Yuan Ping Feng, Daniel Chua, Jianyi Lin, Journal of Power Sources, 2010.
    10. “A parametric study of PEM fuel cell performances,” Lin Wang, Attila Husar, Tianhong Zhou, Hongtan Liu, Journal of Hydrogen Energy, 2003.
    11. “Passive direct methanol fuel cells for portable electronic devices,” F. Achmad , S.K. Kamarudin, W.R.W. Daud, E.H. Majlan, plied Energy,2010.
    12. “The effect of Nafion ionomer loading coated on gas diffusion electrodes with in-situ grown Pt nanowires and their durability in proton exchange membrane fuel cells,” Shangfeng Du , Benjamin Millington, Bruno G. Pollet, Journal of hydrogen energy ,2011.
    13. “Assisted water management in a PEMFC with a modified flow field and its effect on performance,” Natthawoot Bunmark, Sunun Limtrakul, Michael W. Fowler, Terdthai Vatanatham, Jeff Gostick, Journal of hydrogen energy, 2010.
    14. “Development of a novel portable-size PEMFC short stack with electrodeposited Pt hydrogen diffusion anodes,” Francisco Alcaide, Garbin˜ e A´ lvarez, Jose´ Alberto Bla´zquez, Pere L. Cabot, Oscar Miguel, Journal of hydrogen energy, 2010.
    15. “Performance and liquid water distribution in PEFCs with different anisotropic fiber directions of the GDL,” Kyaw Swar Soe Naing, Yutaka Tabe, Takemi Chikahisa, Journal of Power Sources, 2011.
    16. “新型非均質碳纖維雙極板應用在可攜式純氫質子交換膜燃料電池特性研究,” 羅鳴遠,碩士論文,國立中山大學機械工程研究所,中華民國九十三年八月。
    17. “碳纖維束雙極板應用在多功能可變電壓式PEM燃料電池組之研
    發” 蘇佑民,碩士論文,國立中山大學機械工程研究所,中華民國九十八年九月。
    18. “可攜式高效率氫燃料PEMFC研發與特性研究” 李焜正,碩士論文,國立中山大學機械工程研究所,中華民國九十九年九月。
    19. “可自行濕潤質子交換膜燃料電池研發” 陳俊佑,論文,國立中山大學機械工程研究所,中華民國一百年八月。
    20. “可自行濕潤質及避免性能衰退的可攜式氫燃料電池組設計與研發” 蘇訓弘,論文,國立中山大學機械工程研究所,中華民國一百年八月。
    口試委員
  • 楊世安 - 召集委員
  • 劉崇富 - 委員
  • 李明三 - 委員
  • 楊儒 - 委員
  • 陳龍正 - 指導教授
  • 口試日期 2012-08-08 繳交日期 2012-08-28

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫