博碩士論文 etd-0828112-173733 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 童泰豪 (Tai-Hao Tung) 電子郵件信箱 E-mail 資料不公開
畢業系所 機械與機電工程學系研究所(Mechanical and Electro-Mechanical Engineering)
畢業學位 碩士(Master) 畢業時期 101學年第1學期
論文名稱(中) 可穩定操作的可攜式直接甲醇燃料電池組研發 
論文名稱(英) Design and Development of a Stable Operating Passive Portable DMFC Stack
檔案
  • etd-0828112-173733.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:使用者自訂權限:校內 2 年後、校外 2 年後公開

    論文語文/頁數 中文/153
    統計 本論文已被瀏覽 5614 次,被下載 687 次
    摘要(中) 摘要
    本論文主要在研發1瓦左右可自動補充燃料及穩定操作的被動式可攜式直接甲醇燃料電池組(簡稱DMFC)。DMFC性能要長時間維持穩定,最主要是能使反應室內甲醇溶液濃度維持適當及穩定。本論文根據不同電流大小,其所消耗及洩漏的燃料量來予以補充。藉由控制閘門來調節由燃料槽經擴散膜到陽極反應室的甲醇與水補充量,使反應室甲醇溶液濃度能一直維持在適當範圍,以達到電池組長時間運作性能不衰退之目標。但由於擴散膜的擴散通量較小,使得補充裝置的體積較不易縮小,為減少可攜式電池體積,本論文亦採插槽式燃料補充設計,將補充槽與反應室結合在一起,使整個電池組體積縮小,更方便攜帶。而插槽式補充槽與反應室間以插槽及棉線數來調節甲醇與水擴散補充至陽極反應室的速率,故不會消耗電池額外的動力。
    為了減少燃料損耗、提昇燃料利用率,本論文在16-cell DMFC電池組兩電極間的質子交換膜裸露區貼上阻隔膜,可避免經交換膜裸露區的洩漏量,在補充槽燃料容量不變情況下,增加電池組的操作時間。在3.7V(手機額定電壓)及電流225mA下,連續補充燃料可供電池電壓穩定的輸出時間3小時,但反應室甲醇濃度仍可維持在初始濃度附近,此實驗結果證明這種被動式的簡單燃料補充方式,確實可維持電池性能穩定不衰退。
    摘要(英) Abstract
    A one-watt portable air-breathing direct methanol fuel cell stack (called DMFC), which can supply fuel passively and operate steadily, is developed in this thesis. A DMFC to maintain its performance stable, the most important strategy is to keep the methanol concentration in reacting chamber to be proper and stable. A fuel supplying system will be in accordance with the depletion of chemical reaction and the leakage of fuel under different circuit current to supplying fuel. To regulate the methanol and water supplying, a fuel supplying system by gravitation and diffusion forces deliver methanol and water to fill up the consumed fuel to maintain the concentration of methanol solution in anode reaction chamber, by adjusting a sliding gate to control the area of a diffusive membrane and utilizing three cotton threads and hoses to distribute the fuel to proper location. In doing so, the methanol concentration in the anode chamber can keep within an appropriate range, so that the DMFC stack can operate stably for a longer period. Yet the diffusivity of the diffusive membrane is comparatively less, the supply system is not easy to downsize. To reduce the size of portable DMFC, we make use of a fuel plug tank to combine the supply tank and reacting chamber, and thus the cell package is more portable. Between the plug tank and the reacting chamber, the three cotton threads are used to distribute the fuel to proper location. The above two design with no extra auxiliary device; therefore, no extra energy will be consumed.
    To reduce the fuel leakage, and make more use of fuel, four block films is pasted on the bare area of the nafion membranes in a 16-cell DMFC stack. If no fuel is fed into reaction chamber, this will prolong the cell operation time.
    Under the condition of 3.7 V (cell phone rated voltage) and the operating current 225 mA, our experiments display that the stacks with the two fuel supplying systems can continuously operate for more than 3 hours with no obvious change in methanol concentration within reaction chamber. The experimental results show that this simple passive fuel supplemental system can really keep the DMFC stack operating stably for a sufficient long period.
    關鍵字(中)
  • 直接甲醇燃料電池
  • 碳纖維束單極板
  • 自然進氣
  • crossover
  • 可攜式
  • 被動式燃料補充
  • 關鍵字(英)
  • carbon fiber monopolar plate
  • air-breathing
  • replenish
  • DMFC
  • portable DMFC stacks
  • crossover
  • 論文目次 目錄
    目錄 .......................................................................................................... i
    圖目錄 .................................................................................................... vi
    表目錄 .................................................................................................. xiii
    符號說明 .............................................................................................. xiv
    摘要 ...................................................................................................... xvi
    Abstract .............................................................................................. xviii
    第一章 緒論 ........................................................................................... 1
    1.1前言 ................................................................................................ 1
    1.2燃料電池簡介 ................................................................................ 2
    1.2.1燃料電池種類 .......................................................................... 2
    1.2.2 DMFC之優勢 ......................................................................... 3
    1.3 文獻回顧 ....................................................................................... 4
    1.4 研究動機 ..................................................................................... 12
    第二章 DMFC工作原理與理論分析 .................................................. 13
    2.1 DMFC工作原理 .......................................................................... 13
    2.1.1電極反應方程式 .................................................................... 13
    2.1.2甲醇與陽極催化層的氧化機制............................................. 14
    2.2 DMFC之理論分析 ...................................................................... 16
    2.2.1 DMFC電極熱力學 ................................................................ 17
    2.2.2影響DMFC性能的要素 ....................................................... 19
    2.3 DMFC燃料消耗率計算 .............................................................. 23
    2.3.1燃料經電化學反應的消耗率 ................................................ 23
    2.3.2燃料經crossover的滲透蒸散率 ........................................... 24
    2.3.3燃料利用率計算 .................................................................... 25
    2.4 甲醇溶液濃度與密度之關係 ...................................................... 25
    第三章 DMFC基本架構與製作 .......................................................... 26
    3.1 DMFC結構 .................................................................................. 26
    3.1.1質子交換膜 ............................................................................ 26
    3.1.2氣體擴散層(Gas Diffusion Layer;GDL) ........................ 28
    3.1.3微孔層(Micro Porous Layer;MPL) ................................ 29
    3.1.4觸媒層(Catalyst Layer;CL) ............................................ 29
    3.1.5膜電極組................................................................................ 30
    3.1.6單雙極板(Unipolar & Bipolar Plate) ................................. 31
    3.2補充裝置設計概念 ...................................................................... 33
    3.2.1擴散膜式補充槽 .................................................................... 33
    3.2.2插槽式補充槽 ........................................................................ 34
    3.2.3插槽式與擴散膜式之比較 .................................................... 34
    3.2.4 燃料補充裝置材料的選擇 ................................................... 35
    3.3 16-cell Stack之設計製作............................................................. 35
    3.3.116-cell Stack基本尺寸及材料的選擇 .................................... 35
    3.4碳纖維束製作 .............................................................................. 36
    3.5 MEA製作 .................................................................................... 39
    3.5.1質子交換膜前處裡 ................................................................ 40
    3.5.2觸媒層漿料調配 .................................................................... 40
    3.5.3碳布預處理 ............................................................................ 41
    3.5.4電極噴塗................................................................................ 42
    3.5.5 MEA熱壓 .............................................................................. 42
    3.6 製作完成之電池組 ..................................................................... 43
    3.6.1 16-cell電池組碳纖維束結合壓力與總電阻量測 ................. 44
    第四章 實驗材料、設備及步驟介紹 .................................................. 45
    4.1實驗材料 ...................................................................................... 45
    4.2 實驗設備 ..................................................................................... 46
    4.3實驗步驟 ...................................................................................... 52
    4.3.1性能量測步驟 ........................................................................ 52
    4.3.2 甲醇與水對下交換膜與MEA滲透蒸散率實驗之步驟 ...... 52
    4.3.3擴散膜補充裝置之棉線管製作............................................. 53
    4.3.4燃料柱之棉線管製作 ............................................................ 54
    第五章 實驗結果與討論 ...................................................................... 55
    5.1甲醇與水對交換膜與電極之滲透 ............................................... 56
    5.1.1甲醇與水對交換膜的滲透蒸散............................................. 56
    5.1.2甲醇與水對MEA的滲透蒸散 .............................................. 57
    5.2 2-cell電池組性能 ........................................................................ 58
    5.3阻隔膜對滲透蒸散的影響 ........................................................... 58
    5.3.1 2-cell電池組有無阻隔膜對電池電壓穩定性影響 ............... 58
    5.3.2 2-cell電池組,阻隔膜對減少滲透蒸散的影響 ................... 59
    5.3.3 2-cell電池組,有無阻隔膜對燃料利用率的影響 ............... 60
    5.4擴散膜式之燃料補充方式 ........................................................... 60
    5.4.1儲存槽到混合室甲醇與水擴散材料的選擇 ......................... 61
    5.4.2儲存室到反應室燃料輸送材料選擇 ..................................... 61
    5.5插槽式之燃料補充方式 .............................................................. 63
    5.6 16-cell電池組性能 ...................................................................... 63
    5.7 16-cell電池組甲醇與水消耗率 ................................................... 64
    5.8 16-cell電池組有補充燃料對性能穩定性探討 ........................... 65
    5.8.1 16-cell電池組使用擴散膜式進行燃料補充 ......................... 65
    5.8.2 16-cell電池組使用插槽式進行燃料補充 ............................. 66
    5.9 16-cell電池組綜合分析討論 ....................................................... 67
    5.10 16-cell與其它DMFC補充裝置之比較 .................................... 68
    5.11 16-cell電池組應用 .................................................................... 68
    第六章 結論與建議 ............................................................................. 69
    6.1 結論 ............................................................................................. 69
    6.2 未來展望 ..................................................................................... 70
    參考文獻 ............................................................................................... 72
    圖目錄
    圖1.1 William R.Grove 進行的氣體電池實驗 .................................... 76
    圖2.1 DMFC工作原理示意圖 ............................................................. 77
    圖2.2 以化學鍵表示甲醇氧化成CO2可能發生的途徑 ..................... 77
    圖2.3 利用其他金屬協助水分子形成OH,加速吸附在鉑觸媒CO 氧化的過程 ............................................................................................... 78
    圖2.4直接甲醇燃料電池極化曲線示意圖 ......................................... 78
    圖2.5甲醇與水在操作過程中各部分的消耗[22] ............................... 79
    圖2.6密度與濃度之關係(1~15M) ....................................................... 79
    圖3.1 Nafion質子交換膜化學結構式 ................................................. 80
    圖3.2傳統硬質表面雙極板與MEA結合示意圖 ............................... 80
    圖3.3非均質碳纖維束雙極板與MEA結合示意圖 ........................... 81
    圖3.4為燃料柱補充裝置示意圖 ......................................................... 81
    圖3.5擴散膜補充裝置示意圖 ............................................................. 82
    圖3.6擴散膜補充裝置爆炸示意圖 ..................................................... 82
    圖3.7 T型燃料柱尺寸 ......................................................................... 83
    圖3.8陽極框架三視圖 ......................................................................... 83
    圖3.9陰極框架三視圖 ......................................................................... 84
    圖3.10可攜式16-cell DMFC電池組框架組合圖 .............................. 84
    圖3.11可攜式16-cell DMFC電池組框架爆炸圖............................... 85
    圖3.12展開前台麗朗24K碳纖維束 .................................................. 85
    圖3.13自動展開機(燃料電池研究室提供) ......................................... 86
    圖3.14上膠筆頭進行上膠動作(a)上膠中(b)完成一次上膠 ............... 87
    圖3.15完成一層上膠之碳纖維 ........................................................... 88
    圖3.16完成上膠且貼上固態膠 ........................................................... 88
    圖3.17完成之碳纖維片 ....................................................................... 89
    圖3.18碳纖維束堆疊前材料及模具 ................................................... 89
    圖3.19碳纖維束堆疊流程 ................................................................... 90
    圖3.20使用鍍銀線將導線往模具兩旁固定........................................ 91
    圖3.21堆疊完成碳纖維束 ................................................................... 91
    圖3.22(a)堆疊完成碳纖維放入熱壓模具(b)熱壓中 ............................ 91
    圖3.23熱壓完成碳纖維束 ................................................................... 92
    圖3.24將熱壓完成碳纖維束固定於切割機上 .................................... 92
    圖3.25對切完成之碳纖維束 ............................................................... 93
    圖3.26完成修整之碳纖維束單極板 ................................................... 93
    圖3.27噴塗遮罩 .................................................................................. 94
    圖3.28噴塗完成之GDE ..................................................................... 94
    圖3.29 2-cell電池組各部零件 ............................................................. 95
    圖3.30 2-cell電池組 ............................................................................ 95
    圖3.3116-cell DMFC電池組與擴散膜補充裝置 ................................ 96
    圖3.32 16-cell電池組各部零件 ........................................................... 96
    圖3.33 16-cell電池組 .......................................................................... 97
    圖3.34 16-cell電池組,A層8-cell陽極碳纖維束與碳布在不同壓力下其電阻隨結合壓力之關係 .................................................................... 97
    圖3.35 16-cell電池組,B層8-cell陽極碳纖維束與碳布在不同壓力下其電阻隨結合壓力之關係 .................................................................... 98
    圖3.36 16-cell電池組,A層8-cell陰極碳纖維束與碳布在不同壓力下其電阻隨結合壓力之關係 .................................................................... 98
    圖3.37 16-cell電池組,B層8-cell陰極碳纖維束與碳布在不同壓力下其電阻隨結合壓力之關係 .................................................................... 99
    圖4.1電子磅秤 .................................................................................. 100
    圖4.2 超純水製造機.......................................................................... 100
    圖4.3 磁力攪拌加熱器 ...................................................................... 101
    圖4.4超音波振盪機(LEO-3002) ....................................................... 101
    圖4.5 噴塗設備架構圖 ...................................................................... 102
    圖4.6噴塗電極用高壓電源供應器 ................................................... 103
    圖4.7噴塗電極用微注射幫浦 ........................................................... 103
    圖4.8 噴塗電極用低壓高霧化噴槍(轉載東興昌股份有限公司) ..... 104
    圖4.9 噴塗電極用雙軸微步進馬達控制器(轉載坦聯企業) ............. 104
    圖4.10噴塗電極用X-Y精密移動平台 ............................................ 105
    圖4.11 MEA熱壓模組和碳纖維束熱壓模組 .................................... 105
    圖4.12 MEA熱壓模具 ....................................................................... 106
    圖4.13碳纖維束熱壓裝置 ................................................................. 106
    圖4.14碳纖維束切割機 ..................................................................... 107
    圖4.15 直流電子負載器 .................................................................... 107
    圖4.16電子負載器操作軟體 ............................................................. 108
    圖4.17 溫度計 ................................................................................... 108
    圖4.18微量注射針筒......................................................................... 109
    圖4.19阻隔膠帶(耐酸鹼防鍍膠帶)................................................... 109
    圖4.20量測甲醇水溶液對交換膜的滲透率裝置圖 .......................... 110
    圖4.21量測甲醇水溶液對MEA的滲透率裝置圖 ........................... 110
    圖4.22棉線管零件圖與組合圖 ......................................................... 111
    圖4.23擴散補充裝置......................................................................... 111
    圖4.24 T型燃料柱與棉線管之零件圖 .............................................. 112
    圖4.25 不同孔數T型燃料柱與棉線管之組合圖 ............................ 112
    圖5.1初始濃度2M,甲醇與水在不同溫度下對交換膜的擴散通量............................................................................................................. 113
    圖5.2初始濃度2M,甲醇與水在不同溫度下對MEA的擴散通量 113
    圖5.3 2-cell電池組,總電壓及總功率隨電流之變化 ...................... 114
    圖5.4 2-cell電池組平均電壓及平均功率密度隨電流密度之變化 .. 114
    圖5.5 定電流下有無阻隔膜,2-cell電池組電壓隨時間變化之關係............................................................................................................. 115
    圖5.6 2-cell電池組,在定電流160mA下,有無阻隔膜甲醇與水之擴散率比較 ............................................................................................. 115
    圖5.7 2-cell電池組,在定電流160mA下,有無阻隔膜燃料利用率之比較 ..................................................................................................... 116
    圖5.8 PVC防水膠布料不同擴散面積,甲醇的擴散量隨時間之變化,平均擴散通量約81mg/hr•cm2 ......................................................... 116
    圖5.9不同擴散面積,水的擴散量隨時間之變化,平均擴散通量約為60mg/hr•cm2 ..................................................................................... 117
    圖5.10被補充的甲醇與水在2M甲醇溶液中擴散狀態隨時間的變化............................................................................................................. 118
    圖5.11 16-cell電池組,總電壓及總功率隨電流之變化 .................. 119
    圖5.12 16-cell電池組平均電壓及功率密度隨電流密度之變化 ...... 119
    圖5.13 16-cell電池組無燃料補充在不同定電流下,貼阻隔膜對電壓與溫度隨時間變化之關係 .................................................................. 120
    圖5.14 16-cell電池組電流操作下,甲醇與水平均消耗率隨電流之變化 ......................................................................................................... 120
    圖5.15定電流(a)15mA(4.76mA/cm2) 、(b)225mA(71.75mA/cm2)、(c)300mA(95.24mA/cm2)下,使用擴散膜連續補充燃料16-cell電池組電壓與溫度隨時間變化之關係 .......................................................... 121
    圖5.16定電流15mA(4.76mA/cm2)下,使用燃料柱連續補充燃料,16-cell電池組電壓與溫度隨時間變化之關係................................... 121
    圖5.17定電流225mA(71.75mA/cm2)下,使用燃料柱連續補充燃料,16-cell電池組電壓與溫度隨時間變化之關係................................... 122
    圖5.18定電流300mA(95.24mA/cm2)下,使用燃料柱連續補充燃料,16-cell電池組電壓與溫度隨時間變化之關係................................... 122
    圖5.19不同定電流下,電壓隨濃度變化之比較 .............................. 123
    圖5.20 16-cell電池組溫度隨電流變化之關係 .................................. 123
    圖5.21 無電流與16-cell電池組有電流實際操作下,甲醇與水對MEA的擴散通量隨溫度變化之比較 .......................................................... 124
    圖5.22 燃料經由擴散層之濃度變化示意圖 ..................................... 124
    圖5.23 16-cell與擴散膜式補充裝置應用於LED燈上 .................... 125
    圖5.24 16-cell與擴散膜式補充裝置應用於3C手機上 ................... 125
    圖5.25 16-cell與插槽式補充裝置應用於LED燈上 ........................ 126
    圖5.26 16-cell與插槽式補充裝置應用於3C手機上 ....................... 126
    表目錄
    表1.1燃料電池基本特性 ................................................................... 127
    表2.1標準電極電勢表 ....................................................................... 127
    表3.1 插槽式與擴散膜式燃料補充槽優缺點比較 ........................... 128
    表3.2 PP、POM、PETP、PVC材料規格 ........................................ 128
    表3.3 16-cell DMFC電池組,其內部規格及外部尺寸 .................... 129
    表5.1 2-cell stack有無貼阻隔膜甲醇與水的滲透蒸散率之比較 ..... 129
    表5.2 使用擴散膜式補充三小時前後甲醇水溶液濃度變化 ........... 130
    表5.3 16-cell與其它DMFC補充裝置之比較 .................................. 131
    參考文獻 參考文獻
    1. “Preliminary study of SPEEK/PVA blend membranes for DMFC
    applications,” Tao Yang , international journal of hydrogen energy 33 ( 2008 ) 6772-6779.
    2. “Analysis of performance losses of direct methanol fuel cell
    with methanol tolerant PtCoRu/C cathode electrode,” R. Escudero-Cid , P. Herna’ndez-Ferna’ndez , J.C. Pe’rez-Flores , S. Rojas, S. Garcia-Rodrı’guez , E. Fata’s, P. Oco’n * , international journal of hydrogen energy 37 ( 2012 )7119-7130.
    3.“Low methanol crossover and high efficiency direct methanol fuel cell: Theinfluence of diffusion layers,” A.Casalegno, C. Santoro, F. Rinaldi, R. Marchesi, Journal of Power Sources 196 (2011) 2669–2675
    4. “Development of an advanced MEA to use high-concentration
    methanol fuel in a direct methanol fuel cell system,” Kyungmun
    Kang, Giyong Lee, Geonhui Gwak, Yongjun Choi, Hyunchul Ju*, international journal of hydrogen energy 37 (2012) 6285-6291.
    5. “DMFC employing a porous plate for an efficient operation at high methanol concentrations,” Mohammad Ali Abdelkareem, Nobuyoshi Nakagawa* , Journal of Power Sources 162 (2006) 114–123.
    6. “Water management of the DMFC passively fed with a high-concentration methanol solution,”Xianglin Li, Amir Faghri*, Chao Xu, international journal of hydrogen energy 35(2010) 8690-8698.
    7. “直接甲醇燃料電池性能衰退原因探討及16-cell電池組製作與應
    用研究,”黃鈺偉,碩士論文,國立中山大學機械與機電工程學系,中華民國九十八年九月.
    8. “ Double microporous layer cathode for membrane electrode ssembly of passive direct methanol fuel cells,” Jianyu Cao, Mei Chen, Ji Chen, Shenjun Wang, Zhiqing Zou, Zhilin Li, Intertional Journal of Hydrogen Energy 35 (2010) 4622-4629.
    9. “Performance characteristics of a novel tubular-shaped passive direct methanol fuel cell,” Travis Ward, Xianglin Li, Amir Faghri, Journal of Power Sources 196 (2011) 6264–6273.
    10. “Investigation of the effects of compression pressure on direct methanol fuel cell,”Yingli Zhu, Chong Liu, Junsheng Liang, Liding Wang,Journal of Power Sources 196 (2011) 264–269.
    11. “ Influence of ionomer content on the proton conduction and oxygen transport in the carbon-supported catalyst layers in DMFC,”
    Xinsheng Zhao, Wei Li, Yongzhu Fu, Arumugam Manthiram* , international journal of hydrogen energy 37 ( 2012 ) 9845-9852.
    12. “Development of a 1 W passive DMFC,”Zhen Guo, Amir Faghri ,International, Communications in Heat and Mass Transfer 35 (2008) 225–239.
    13. “An innovative passive DMFC technology,”Amir Faghri , Zhen Guo,Applied Thermal Engineering 28 (2008) 1614–1622.
    14. “A self-regulated passive fuel-feed system for passive direct methanol fuel cells,” Y.H. Chan, T.S. Zhao, R. Chen, C. Xu, Journal of Power Sources 176 (2008) 183–190.
    15.“Development of a passive direct methanol fuel cell (DMFC)
    twin-stack for long-term operation,” Yingli Zhu, Junsheng Liang, Chong Liu, Tianliang Ma, LidingWang, Journal of Power Sources 193 (2009) 649–655.
    16.“Self-regulating passive fuel supply for small direct methanol fuel cells operating in all orientations,” N. Paust , S. Krumbholz, S. Munt, C. Muller, P. Koltay, R. Zengerl, C. Ziegler, Journal of Power Sources 192 (2009) 442–450.
    17. “Development of a passive direct methanol fuel cell stack for high methanol concentration,” Takuya Tsujiguchi, Mohammad Ali Abdelkareem, Takuya Kudo, Nobuyoshi Nakagawa, Tatehiro Shimizu, Michio Matsuda, Journal of Power Sources 195 (2010) 5975–5979.
    18.“可長時間穩定運作之被動式可攜式直接甲醇燃料電池組設計
    與研發,”游晴翔,碩士論文,國立中山大學機械與機電工程學系,中華民國一百年九月.
    19. “ Fabrication and performance evaluation for a novel small planar
    passive direct methanol fuel cell stack,”Ligang Feng, Weiwei Cai,
    Chenyang Li, Jing Zhang, Changpeng Liu, Wei Xing ,Fuel(2011).
    20. “燃料電池”,黃鎮江編著,全華科技圖書公司,2005.
    21. “Structural diversity and orientation dependence of a liquid-fed
    passive air-breathing direct methanol fuel cell,” Wei Yuan*, Yong Tang, Xiaojun Yang, Bin Liu, Zhenping Wan, international journal of hydrogen energy 37 ( 2012 )9298-9313.
    22. “Methanol and water crossover in a passive liquid-feed direct
    methanol fuel cell,” Chao Xu, Amir Faghri*, Xianglin Li, Travis
    Ward, international journal of hydrogen energy 35(2010)
    1769-1777.
    23.“500W燃料電池MEA之製作與性能,”蔡柏鋒,碩士論文,
    國立中山大學機械與機電工程學系,中華民國一百零一年二月.
    24. “可長時間運作性能不易衰退的DMFC電池組研發,” 陳建銘,碩士論文,國立中山大學機械與機電工程學系,中華民國九十九年九月.
    口試委員
  • 楊世安 - 召集委員
  • 劉崇富 - 委員
  • 李明三 - 委員
  • 楊儒 - 委員
  • 陳龍正 - 指導教授
  • 口試日期 2012-08-08 繳交日期 2012-08-28

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫