Responsive image
博碩士論文 etd-0830106-165024 詳細資訊
Title page for etd-0830106-165024
論文名稱
Title
使用混合正交極座標調制架構之高效率射頻發射機之研製
Study and Implementation of Highly Efficient RF Transmitter Using Hybrid Quadrature Polar Modulation Scheme
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-31
繳交日期
Date of Submission
2006-08-30
關鍵字
Keywords
高效率線性發射機、功率放大器、數位預失真
Power Amplifier, Digital Predistortion, Highly Efficient Linear Transmitter
統計
Statistics
本論文已被瀏覽 5763 次,被下載 0
The thesis/dissertation has been browsed 5763 times, has been downloaded 0 times.
中文摘要
本論文提出了一個新型之混合式正交極座標調制發射機架構,此架構應用高效率功率放大器,如E類功率放大器,以達到高效率且適用於多模發射之目標。混合式正交極座標調制架構採用正交調制訊號驅動射頻功率放大器之輸入端,並以高效率S類調制器調制功率放大器之電源端。由於正交調制訊號與S類調制器均具有波包訊號可能導致雙重波包調制現象,故須發展數位預失真技術以改善此現象所導致之訊號失真。搭配預失真器之混合式正交極座標調制架構可降低直流功率消耗與輸入射頻訊號之饋入穿透現象,以實現高功率增加效率與高線性度之射頻發射機。
Abstract
This dissertation presents a hybrid quadrature polar modulator (HQPM) to drive the power amplifier (PA) highly efficiently in a wireless RF transmitter with good potential for multi-mode operation. For enhancing the efficiency, a Class-E PA is used in the transmitter. The HQPM consists of a quadrature modulator for processing the RF modulated carrier and a Class-S modulator for processing the supply-voltage signal. The quadrature modulator and the Class-S modulator deliver the output signals with envelope variation before being inserted into the RF-input terminal and the supply-voltage terminal of Class-E PA, respectively, causing the double envelope modulation to distort the modulated RF signal at the PA output. Therefore, a digital predistorter is proposed to be embedded in the HQPM for compensation. The use of such predistorted HQPM techniques can help reducing the average DC and RF input powers and the output feed-through levels so as to enhance power added efficiency and adjacent channel power rejection quite remarkably.
目次 Table of Contents
1 Introduction 1
1.1 Research Motivation 1
1.2 Transmitter Architectures 3
1.2.1 Quadrature Modulation-Based Transmitter 3
1.2.2 Linear Transmitters Using Switching Mode PAs 4
1.2.3 Hybrid Quadrature Polar Modulation Architecture 7
1.3 Overview of Dissertation 10
2 DSM-Based Class-S Modulator 12
2.1 Class-S Modulator Architecture 12
2.1.1 Introduction to Class-S Modulator 12
2.1.2 Delta-Sigma Modulator 13
2.2 Class-S Modulator Design and Implementation 15
2.2.1 System Quality Analysis 15
2.2.2 Circuit Implementation 17
3 Class-E Power Amplifier 21
3.1 Class-E Power Amplifier Design 21
3.1.1 Design Consideration 21
3.1.2 Circuit Analysis 22
3.2 Analytical and Simulated Results 26
3.3 Effects of DC-feed and Bondwire Inductances 29
3.4 Circuit Implementation 31
4 Baseband Processor with Predistortion Scheme 34
4.1 Digital Predistorter 34
4.2 Coordinate Rotation Digital Computer 37
4.3 Baseband Processor 41
5 System Analysis and Experimental Results 45
5.1 System Parameters Analysis 45
5.1.1 Output Signal Quality 45
5.1.2 Path-Delay Mismatch 47
5.1.3 Average Transmit Efficiency 48
5.2 Simulated and Experimental Results 49
6 Conclusions 56
Bibliography 58

Appendix 67
參考文獻 References
[1] S. C. Cripps, RF Power Amplifiers for Wireless Communications, Norwood, MA: Artech House, 1999.
[2] S. C. Cripps, Advanced Techniques in RF Power Amplifier Design, Norwood, MA: Artech House, 2002.
[3] P. B. Kenington, High Linearity RF Amplifier Design, Norwood, MA: Artech House, 2000.
[4] N. O. Sokal and A. D. Sokal, "Class E-a new class of high-efficiency tuned single-ended switching power amplifiers," IEEE J. Solid-State Circuits, vol. 10, pp. 168-176, June 1975.
[5] N. O. Sokal and F. H. Raab, "Harmonic output of class-E RF power amplifiers and load coupling network design," IEEE J. Solid-State Circuits, vol. 12, pp. 86-88, Jan. 1977.
[6] N. O. Sokal, "Class E high-efficiency switching-mode tuned power amplifier with only one inductor and one capacitor in load network-approximate analysis," IEEE J. Solid-State Circuits, vol. 16, pp. 380-384, April 1981.
[7] W. Young Yun, Y. Youngoo, and K. Bumman, "Analysis and experiments for high-efficiency class-F and inverse class-F power amplifiers," IEEE Trans. Microwave Theory Tech., vol. 54, pp. 1969-1974, May 2006.
[8] M. Wren and T. J. Brazil, "Experimental class-F power amplifier design using computationally efficient and accurate large-signal pHEMT model," IEEE Trans. Microwave Theory Tech., vol. 53, pp. 1723-1731, May 2005.
[9] F. H. Raab, "Maximum efficiency and output of class-F power amplifiers," IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1162-1166, June 2001.
[10] F. H. Raab, "Class-F power amplifiers with reduced conduction angles," IEEE Trans. Broadcasting, vol. 44, pp. 455-459, April 1998.
[11] S. Gao, "High efficiency class-F RF/microwave power amplifiers," IEEE Microwave Magazine, vol. 7, pp. 40-48, Jan. 2006.
[12] S. Mann, M. Beach, P. Warr, and J. McGeehan, "Increasing the talk-time of mobile radios with efficient linear transmitter architectures," IEEE J. Electronics and Communication Engineering vol. 13, pp. 65-76, April 2001.
[13] J. Staudiger, "An overview of efficiency enhancements with application to linear handset power amplifiers," in Proc. IEEE RFIC Symp., 2002, pp. 45-48.
[14] S. Forestier, P. Bouysse, R. Quere, A. Mallet, J. M. Nebus, and L. Lapierre, "Joint optimization of the power-added efficiency and the error-vector measurement of 20-GHz pHEMT amplifier through a new dynamic bias-control method," IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1132-1141, April 2004.
[15] D. Junxiong, P. S. Gudem, L. E. Larson, and P. M. Asbeck, "A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications," IEEE Trans. Microwave Theory Tech., vol. 53, pp. 529-537, Feb. 2005.
[16] D. Junxiong, P. S. Gudem, L. E. Larson, D. F. Kimball, and P. M. Asbeck, "A SiGe PA with dual dynamic bias control and memoryless digital predistortion for WCDMA handset applications," IEEE J. Solid-State Circuits, vol. 41, pp. 1210-1221, May 2006.
[17] Y. Kyounghoon, G. I. Haddad, and J. R. East, "High-efficiency class-A power amplifiers with a dual-bias-control scheme," IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1426-1432, Aug. 1999.
[18] W. Narisi, V. Yousefzadeh, D. Maksimovic, S. Pajic, and Z. B. Popovic, "60% efficient 10-GHz power amplifier with dynamic drain bias control," IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1077-1081, March 2004.
[19] S. Reed, W. Yide, F. Huin, and S. Toutain, "HBT power amplifier with dynamic base biasing for 3G handset applications," IEEE Microwave Wirel. Compon. Lett., vol. 14, pp. 380-382, Aug. 2004.
[20] S. L. Wong and S. Luo, "A 2.7-5.5 V, 0.2-1 W BiCMOS RF driver amplifier IC with closed-loop power control and biasing functions," IEEE J. Solid-State Circuits, vol. 33, pp. 2259-2264, Dec. 1998.
[21] J. C. Clifton, L. Albasha, A. Lawrenson, and A. M. Eaton, "Novel multimode J-pHEMT front-end architecture with power-control scheme for maximum efficiency," IEEE Trans. Microwave Theory Tech., vol. 53, pp. 2251-2258, June 2005.
[22] J. Staudinger, B. Gilsdorf, D. Newman, G. Norris, G. Sadowniczak, R. Sherman, T. Quach, and V. Wang, "800 MHz power amplifier using envelope following technique," in Proc. Radio and Wireless Conf., 1999, pp. 301-304.
[23] B. Sahu and G. A. Ricon-Mora, "A high-efficiency linear RF power amplifier with power-tracking dynamically adaptive buck-boost supply," IEEE Trans. Microwave Theory Tech., vol. 52, pp. 112-120, Jan. 2004.
[24] D. R. Anderson and W. H. Cantrell, "High-efficiency high-level modulator for use in dynamic envelope tracking CDMA RF power amplifiers," in IEEE MTT-S Int. Microwave Symp. Dig., 2001, pp. 1509-1512.
[25] J. Staudinger, B. Gilsdorf, D. Newman, G. Norris, G. Sadowniczak, R. Sherman, and T. Quach, "High efficiency CDMA RF power amplifier using dynamic envelope tracking technique," in IEEE MTT-S Int. Microwave Symp. Dig., 2000, pp. 873-876.
[26] F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, "Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications," IEEE Trans. Microwave Theory Tech., vol. 53, pp. 1244-1255, April 2005.
[27] Y. Youngoo, C. Jeonghyeon, S. Bumjae, and K. Bumman, "A microwave Doherty amplifier employing envelope tracking technique for high efficiency and linearity," IEEE Microwave Wirel. Compon. Lett., vol. 13, pp. 370-372, Sept. 2003.
[28] V. Yousefzadeh, E. Alarcon, and D. Maksimovic, "Efficiency optimization in linear-assisted switching power converters for envelope tracking in RF power amplifiers," in Proc. ISCAS, 2005, pp. 1302-1305.
[29] D. C. Cox, "Linear amplification with nonlinear components," IEEE Trans. Commun., vol. 23, pp. 1942-1945, Dec. 1974.
[30] D. C. Cox and R. P. Leck, "Component signal separation and recombination for linear amplification with nonlinear components," IEEE Trans. Commun., vol. 23, pp. 1281-1287, Nov. 1975.
[31] D. C. Cox and R. P. Leck, "A VHF implementation of a LINC amplifier," IEEE Trans. Commun., vol. 24, pp. 1018-1022, Sept. 1976.
[32] S. A. Hetzel, A. Bateman, and J. P. McGeehan, "LINC transmitter," Electron. Lett., vol. 27, pp. 844-846, 1991.
[33] F. J. Casadevall and A. Valdovinos, "Performance analysis of QAM modulations applied to the LINC transmitter," IEEE Trans. Veh. Technol., vol. 42, pp. 399-406, Nov. 1993.
[34] L. Sundstrom, "The effect of quantization in a digital signal component separator for LINC transmitters," IEEE Trans. Veh. Tech., vol. 45, pp. 346-352, May 1996.
[35] X. Zhang, L. E. Larson, and P. M. Asbeck, "Calibration scheme for LINC transmitter," Electron. Lett., vol. 37, pp. 317-318, March 2001.
[36] C. P. Conradi and J. G. McRory, "Predistorted LINC transmitter," Electron. Lett., vol. 38, pp. 301-302, May 2002.
[37] X. Zhang, L. E. Larson, and P. M. Asbeck, Design of Linear RF Outphasing Power Amplifiers, Norwood, MA: Artech House, 2003.
[38] P. Garcia, J. de Mingo, A. Valdovinos, and A. Ortega, "An adaptive digital method of imbalances cancellation in LINC transmitters," IEEE Trans. Veh. Technol., vol. 54, pp. 879-888, May 2005.
[39] F. H. Raab, "Efficiency of outphasing RF power amplifier systems," IEEE Trans. Commun., vol. 23, pp. 1094-1099, Oct. 1985.
[40] L. Sundstrom and M. Johansson, "Effect of modulation scheme on LINC transmitter power efficiency," Electron. Lett., vol. 30, pp. 1643-1645, Sept. 1994.
[41] R. Langridge, T. Thornton, P. M. Asbeck, and L. E. Larson, "A power re-use technique for improved efficiency of outphasing microwave power amplifiers," IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1467-1470, Aug. 1999.
[42] Z. Xuejun, L. E. Larson, P. M. Asbeck, and R. A. Langridge, "Analysis of power recycling techniques for RF and microwave outphasing power amplifiers," IEEE Trans. Circuits Syst., vol. 49, pp. 312-320, May 2002.
[43] L. R. Kahn, "Single sideband transmission by envelope elimination and restoration," in Proc. IRE, 1952, pp. 803-806.
[44] F. H. Raab, B. E. Sigmon, R. G. Myers, and R. M. Jackson, "L-band transmitter using Kahn EER technique," IEEE Trans. Microwave Theory Tech., vol. 46, pp. 2220-2225, Dec. 1998.
[45] D. Rudolph, "Kahn EER technique with single-carrier digital modulations," IEEE Trans. Microwave Theory Tech., vol. 51, pp. 548-552, Feb. 2003.
[46] A. Diet, C. Berland, M. Villegas, and G. Baudoin, "EER architecture specifications for OFDM transmitter using a class E amplifier," IEEE Microwave Wirel. Compon. Lett., vol. 14, pp. 389-391, Aug. 2004.
[47] J. Young-Sang, Y. Hoe-Sung, and N. Sangwook, "A novel EER structure for reducing complexity using negative resistance amplifier," IEEE Microwave Wirel. Compon. Lett., vol. 14, pp. 195-197, May 2004.
[48] F. Wang, D. Kimball, J. Popp, A. Yang, D. Y. C. Lie, P. Asbeck, and L. E. Larson, "Wideband envelope elimination and restoration power amplifier with high efficiency wideband envelope amplifier for WLAN 802.11g applications," in IEEE MTT-S Int. Microwave Symp. Dig., 2005, pp. 645-648.
[49] C. Berland, I. Hibon, J. F. Bercher, M. Villegas, D. Belot, D. Pache, and V. Le Goascoz, "A transmitter architecture for nonconstant envelope modulation," IEEE Trans. Circuits Syst., vol. 53, pp. 13-17, Jan. 2006.
[50] F. H. Raab, "Intermodulation distortion in Kahn-technique transmitters," IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2273-2278, Dec. 1996.
[51] W. Liu, J. Lau, and R. S. Cheng, "Considerations on applying OFDM in a highly efficient power amplifier," IEEE Trans. Circuits Syst., vol. 46, pp. 1329-1336, Nov. 1999.
[52] J. K. Jau and T. S. Horng, "Linear interpolation scheme for compensation of path-delay difference in an envelope elimination and restoration transmitter," in Proc. Asia-Pacific Microwave Conf., 2001
[53] D. Rudolph, "Out-of-band emissions of digital transmissions using Kahn EER technique," IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1979-1983, Aug. 2002.
[54] E. McCune and W. Sander, "EDGE transmitter alternative using nonlinear polar modulation," in Proc. ISCAS, 2003, pp. 594-597.
[55] A. W. Hietala, "A quad-band 8PSK/GMSK polar transceiver," IEEE J. Solid-State Circuits, vol. 41, pp. 1133-1141, May 2006.
[56] T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, K. Dongsoo, D. Ripley, F. Balteanu, and I. Gheorghe, "Quad-band GSM/GPRS/EDGE polar loop transmitter," IEEE J. Solid-State Circuits, vol. 39, pp. 2179-2189, Dec. 2004.
[57] E. McCune, "High-efficiency, multi-mode, multi-band terminal power amplifiers," IEEE Microwave Magazine, vol. 6, pp. 44-55, June 2005.
[58] P. Reynaert and M. S. J. Steyaert, "A 1.75-GHz polar modulated CMOS RF power amplifier for GSM-EDGE," IEEE J. Solid-State Circuits, vol. 40, pp. 2598-2608, Dec. 2005.
[59] J. H. Chen, P. Fedorenko, and J. S. Kenney, "A Low Voltage W-CDMA Polar Transmitter With Digital Envelope Path Gain Compensation," IEEE Microwave Wirel. Compon. Lett., vol. 16, pp. 428-430, July 2006.
[60] M. R. Elliott, T. Montalvo, B. P. Jeffries, F. Murden, J. Strange, A. Hill, S. Nandipaku, and J. Harrebel, "A polar modulator transmitter for GSM/EDGE," IEEE J. Solid-State Circuits, vol. 39, pp. 2190-2199, Dec. 2004.
[61] E. McCune, "Multi-mode and multi-band polar transmitter for GSM, NADC, and EDGE," in Proc. IEEE WCNC, 2003, pp. 812-815.
[62] J. K. Jau, F. Y. Han, M. C. Du, and T. S. Horng, "Polar modulation-based RF power amplifiers with enhanced envelope processing technique," in Proc. Eur. Microwave Conf., 2004, pp. 1317-1320.
[63] K. C. Peng, J. K. Jau, and T. S. Horng, "A novel EER transmitter using two-point delta-sigma modulation scheme for WLAN and 3G applications," in IEEE MTT-S Int. Microwave Symp. Dig., 2002, pp. 1651-1654.
[64] ETSI Tdoc SMG2 999/99, "EDGE: Concept Proposal for Enhanced GPRS," Ericsson, May 17 - 19, 1999.
[65] J. K. Jau, Y. A. Chen, T. S. Horng, and J. Y. Li, "Envelope following-based RF transmitters using switching-mode power amplifiers," IEEE Microwave Wirel. Compon. Lett., vol.16, pp. 476-478, Aug. 2006.
[66] J. K. Jau, Y. A. Chen, S. C. Hsiao, T. S. Horng, and J. Y. Li, "Highly efficient multimode RF transmitter using the hybrid quadrature polar modulation scheme," in IEEE MTT-S Int. Microwave Symp. Dig., 2006, pp. 789-792.
[67] F. H. Raab and D. J. Rupp, "Class-S high efficiency amplitude modulator," RF Design, vol. 17, pp. 70-74, May 1994.
[68] V. Saari, P. Juurakko, J. Ryyndnen, and K. Halonen, "13.5 MHz class-S modulator for an EER transmitter," in Proc. Norchip Conference, 2004, pp. 253-256.
[69] D. K. Su and W. J. McFarland, "An IC for linearizing RF power amplifiers using envelope elimination and restoration," IEEE J. Solid-State Circuits, vol. 33, pp. 2252-2258, Dec. 1998.
[70] S. Abedinpour, I. Deligoz, J. Desai, M. Figiel, and S. Kiaei, "Monolithic supply modulated RF power amplifier and DC-DC power converter IC," in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 603-606.
[71] G. Hanington, P. F. Chen, V. Radisic, T. Itoh, and P. M. Asbeck, "Microwave power amplifier efficiency improvement with a 10 MHz HBT DC-DC converter," in IEEE MTT-S Int. Microwave Symp. Dig., 1998, pp. 589-592.
[72] V. Yousefzadeh, E. Alarcon, and D. Maksimovic, "Three-level buck converter for envelope tracking applications," IEEE Trans. Power Electron., vol. 21, pp. 549-552, March 2006.
[73] G. I. Bourdopoulos, A. Pnevmatikakis, V. Anastassopoulos, and T. L. Deliyannis, Delta-Sigma Modulators, London: Imperial College Press, 2003.
[74] A. J. Frazier and M. K. Kazimierczuk, "DC-AC power inversion using sigma delta modulation," IEEE Trans. Circuits Syst., vol. 47, pp. 79-82, Jan. 2000.
[75] Y. Fujimoto, P. L. Re, and M. Miyamoto, "A delta-sigma modulator for a 1-bit digital switching amplifier," IEEE J. Solid-State Circuits, vol. 40, pp. 1865-1871, Sept. 2005.
[76] R. M. Gray, "Oversampling sigma-delta modulation," IEEE Trans. Commun., vol. 35, pp. 481-489, May 1987.
[77] S. R. Norsworthy, R. Schreier, and G. C. Temes, Delta-Sigma Data Converters, New York, NY: IEEE Press, 1997.
[78] R. W. Stewart and E. Pfann, "Oversampling and sigma-delta strategies for data conversion," J. Electronics and Communication Engineering, pp. 37-47, Feb. 1998.
[79] G. Tapang and C. Saloma, "Dynamic-range enhancement of an optimized 1-bit A/D converter," IEEE Trans. Circuits Syst., vol. 49, pp. 42-47, Jan. 2002.
[80] H. Wang, "A geometric view of sigma delta modulations," IEEE Trans. Circuits Syst., vol. 39, pp. 402-405, June 1992.
[81] D. P. Kimber and P. Gardne, "Power series analysis of the Class E power amplifier," in Proc. Eur. Microwave Conf., 2004, pp. 1461-1464.
[82] R. E. Zulinski and J. K. Steadman, "Class E power amplifiers and frequency multipliers with finite DC-feed inductance," IEEE Trans. Circuits Syst., vol. 34, pp. 1074-1087, Sept. 1987.
[83] C. P. Avratoglou, N. C. Voulgaris, and F. I. Ioannidou, "Analysis and design of a generalized Class E tuned power amplifier," IEEE Trans. Circuits Syst., vol. 36, pp. 1086-1079, Aug. 1989.
[84] M. Kazimierczuk and K. Puczko, "Exact analysis of class E tuned power amplifier at any Q and switch duty cycle," IEEE Trans. Circuits Syst., vol. 34, pp. 149-159, Feb. 1987.
[85] B. E. Klehn and S. S. Islam, "An analysis of Class-E power amplifiers for RF communications," in Proc. ISCAS, 2004, pp. 13-26.
[86] C. H. Li and Y. O. Yam, "Maximum frequency and optimum performance of Class E power amplifiers," IEE Proceedings-Circuits, Devices, and Systems, pp. 174-184, June 1994.
[87] C. H. Li and Y. O. Yam, "Analysis and design of the Class E amplifier with nonzero ON resistance," Microwave and Optical Technology Letter, pp. 337-341, May 1994.
[88] P. M. Guado, C. Bernal, and A. Mediano, "Exact analysis of a simple class E circuit version for device characterization purposes," in IEEE MTT-S Int. Microwave Symp. Dig., 2003, pp. 1717-1740.
[89] J. K. Jau, Y. A. Chen, T. S. Horng, and T. L. Wu, "Optimum analytical design solution to intergrated Class-E amplifiers," in Proc. IASTED Wireless Networks and Emerging Tech. Conf., 2005, pp. 40-44.
[90] R. Andraka, "A survey of CORDIC algorithms for FPGA based computers," in Proc. Field Programmable Gate Arrays Conf., 1998, pp. 191-200.
[91] J. Duprat and J. M. Muller, "The CORDIC algorithm: New results for fast VLSI implementation," IEEE Trans. Computers, vol. 42, pp. 168-17,1993.
[92] G. L. Haviland and A. A. Tuszynski, "A CORDIC arithmetic processor chip," IEEE J. Solid-State Circuits, vol. 15, pp. 4-15, Jan. 1980.
[93] A. M. Despain, "Fourier transform computations using CORDIC iterations," IEEE Trans. Computers, vol. 23, pp. 993-1001, 1974.
[94] W. J. Duh and J. L. Wu, "Implementing the discrete cosine transform by using CORDIC techniques," in Proc. Int. VLSI Technology, Systems and Applications Symp., 1989, pp. 281-285.
[95] J. Volder, "The CORDIC trigonometric computing technique," IRE Trans. Electronic Computing, pp. 330-334, Sept. 1959.
[96] D. Lee and M. Morf, "Generalized CORDIC for digital signal processing," in Proc. IEEE Acoustics, Speech, and Signal Processing Conf., 1982, pp. 1748-1751.
[97] D. Timmermann, H. Hahn, B. J. Hosticka, and G. Schmidt, "A programmable CORDIC chip for digital signal processing applications," IEEE J. Solid-State Circuits, vol. 26, pp. 1317-1321, Sept. 1991.
[98] J. Volder, "Binary computation algorithms for coordinate rotation and function generation," Convair Report IAR-1 148 Aeroelectrics Group, June 1956.
[99] Y. H. Hu and S. Naganathan, "An angle recoding method for CORDIC algorithm implementation," IEEE Trans. Computers, vol. 42, pp. 99-102, Jan. 1993.
[100] 3GPP2 C.S0024, "cdma2000 High Rate Packet Data Air Interface Specification," Version 2.1, Aug. 2001.
[101] E. P. Cunningham, Digital Filtering, Boston, MA: Houghton Mifflin Company, 1992.
[102] R. Schreier, "The delta-sigma toolbox," Analog Device Inc., Version 6, Jan. 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.143.181
論文開放下載的時間是 校外不公開

Your IP address is 3.15.143.181
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code