Responsive image
博碩士論文 etd-0904112-174428 詳細資訊
Title page for etd-0904112-174428
論文名稱
Title
WiMAX中繼站網路下以基因演算法為基礎之省電多播排程
Genetic Algorithm-Based Energy Efficient Multicast Scheduling for WiMAX Relay Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-09-04
繳交日期
Date of Submission
2012-09-04
關鍵字
Keywords
NP-complete、802.16j、基因演算法、省電、多播排程、無線都會網路
energy efficiency, genetic algorithm, IEEE 802.16j, multicast, NP-complete, and wireless metropolitan area networks.
統計
Statistics
本論文已被瀏覽 5717 次,被下載 430
The thesis/dissertation has been browsed 5717 times, has been downloaded 430 times.
中文摘要
IEEE 802.16e是目前無線都會網路的媒介存取控制的國際標準(也就是俗稱的WiMAX)。為了進一步提昇網路的傳輸量及擴展基地台的涵蓋範圍,IEEE又於2009年制訂了802.16j的國際標準。隨著智慧型手機的普及,許多無線都會網路皆有提供多播服務。另一方面,由於行動台大多是使用電池作為電力來源,因此省電機制也就變得很當重要。本論文探討802.16j無線中繼網路中的省電多播排程問題,目標是使得網路的multicast energy efficiency最大。我們首先證明此一問題為NP-complete。接著我們修改SMBC-AMC的方法,使其適用於802.16j的環境。此一方法稱為SMBC-relay。由於SMBC-relay可能造成資料的重複傳送,因此我們提出另一個解決方案,稱之為GAMS。在GAMS裡頭,每筆multicast data只會被傳送一次;此外,GAMS採用基因演算法來求得此一問題的近似最佳解。採用基因演法的一個重大考量是基地台可以在任意時間終止演算法的執行。模擬實驗結果顯示,即使我們限制GAMS的執行時間不得超過一個multicast superframe,GAMS所所產生的多播排程解,其multicast energy efficiency仍然勝過SMBC-relay。
Abstract
IEEE 802.16e (also known as Mobile WiMAX) is currently the international MAC (medium access control) standard for wireless metropolitan area networks. To enhance the network throughput and extend the coverage of base station, IEEE then defined the 802.16j standard. Clearly, one of the popular applications for WiMAX is the multicast service. On the other hand, the design of power saving technologies is important since mobile stations are often powered by batteries. In this thesis, we study the maximum energy-efficient multicast scheduling (MEMS) problem for an IEEE 802.16j network with transparent mode. Specifically, the base station should determine how to schedule the multicast data in a multicast superframe such that the multicast energy efficiency of network is maximal. We first prove that the MEMS problem is NP-complete. Then on the basis of SMBC-AMC, we propose its variant, called SMBC-relay, to solve this problem. However, in SMBC-relay, the base station may send the same multicast data several times, wasting the scarce bandwidth. Hence we we propose a genetic algorithm-based multicast scheduling algorithm, called GAMS. One of the key features of GAMS is that the base station can control when to terminate the algorithm by stopping the evolution at any time. Simulation results show that GAMS significantly outperforms SMBC-relay in terms of multicast energy efficiency.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 vii
表次 x
第一章 序論 1
1.1動機 2
1.1.1 Relay對於multicast的影響 2
1.1.2 Multicast scheduling對於省電的影響 2
1.2 貢獻 5
第二章 相關文獻 7
第三章 背景知識 10
3.1 訊框架構 10
3.2 正交分頻多重存取 10
3.3 Multicast Superframe 11
3.4調變及SNR計算 12
第四章 省電多播排程 13
4.1 問題定義 13
4.2 NP-Complete証明 15
4.3 SMBC-relay 19
4.4 以基因演算法為基礎的省電多播排程 27
4.4.1 基因演算法的架構 27
4.4.2 染色體定義 28
4.4.3 計算適應函數值 29
4.4.4演化程序 29
第五章 模擬實驗 32
5.1 模擬環境及參數 32
5.2 迭代次數的影響 33
5.3 GAMS的程式執行時間 34
5.4資料需求機率對energy efficiency的影響 36
5.5 Mobile Stations個數對Energy Efficiency的影響 38
5.6 Subchannels個數對Energy Efficiency的影響 40
5.7 Relays個數對Energy Efficiency的影響 40
5.8 Mobile Stations地理位置分佈的影響 41
5.9 資料需求機率分佈對傳輸排程的影響 44
5.10 資料熱門程度對Energy Efficiency的影響 46
第六章 結論 50
參考文獻 References
[1] A. Abdollahpouri and B. E. Wolfinger, “On the Efficiency of Multicasting for IPTV Delivery over IEEE 802.16j Networks,” International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS), pp. 151–159, June 2011.
[2] H. Anegg, H. Kunczier, E. Michlmayr, G. Pospischil, and M. Umlauft, “LoL@: Designing a Location based UMTS Application,” VE-Verbandszeitschrift e&i, Ausgabe, Vol. 119, No. 2, pp. 48–51, 2002.
[3] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX: Understanding Broadband Wireless Networking, Prentice Hall PTR, 2007.
[4] J. Boyer, D. D. Falconer, and H. Yanikomeroglu, “Multihop Diversity in Wireless Relaying Channels,” IEEE Transactions on Communications, Vol. 52, No. 10, pp. 1820–1830, 2004.
[5] M. Bakhuizer and U. Horn, “Mobile Broadcast/Multicast in Mobile Networks,” Ericsson Rev., Vol. 1, 2005.
[6] R. Cohen and L. Katzir, “On the Trade-Off Between Energy and Multicast Efficiency in 802.16e-Like Mobile Networks,” IEEE Transactions on Mobile Computing, Vol. 7, No. 3, pp. 346–357, Mar. 2008.
[7] T.-C. Chen and J.-C. Chen, “Extended Maximizing Unavailability Interval (eMUI): Maximizing Energy Saving in IEEE 802.16e for Mixing Type I and Type II PSCs,” IEEE Communications Letters, Vol. 13, No. 2, pp. 151–153, Feb. 2009.
[8] M.Y. ElNainay, D. H. Friend, and A. B. MacKenzie, “Channel Allocation & Power Control for Dynamic Spectrum Cognitive Networks Using a Localized Island Genetic Algorithm,” 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN 2008), pp. 1–5, Oct. 2008.
[9] J. J. Grefenstette, “Optimization of Control Parameters for Genetic Algorithms,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 16, No. 1, pp. 122–128, Jan. 1986.
[10] K. Hyoil and K.G. Shin, “Asymmetry-Aware Real-Time Distributed Joint Resource Allocation in IEEE 802.22 WRANs,” 29th IEEE Conference on Computer Communications (INFOCOM), pp. 1–9, Mar. 2010.
[11] IEEE 802.16m-08/004r5, IEEE 802.16m Evaluation Methodology Document, Jan. 2009. [Online]. Available: http://ieee802.org/16/tgm/index.html
[12] IEEE Standard 802.16-2004, IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Fixed Broadband Wireless Access Systems, Dec. 2004.
[13] IEEE Standard 802.16e-2005, IEEE Standard for Local and Metropolitan Area Networks. Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems. Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, IEEE, Dec. 2005.
[14] IEEE Standard 802.16j-2009, IEEE Standard for Local and Metropolitan Area Networks, Part 16: Air Interface for Broadband Wireless Access Systems Amendment 1: Multiple Relay Specification, June 2009.
[15] J. Jang, K. Han, and S. Choi, “Adaptive Power Saving Strategies for IEEE 802.16e Mobile Broadband Wireless Access,” Asia-Pacific Conference on Communications, 2006 (APCC '06), pp. 1–5, Aug. 2006.
[16] A. Konak, D. W. Coit., and A. -E. Smith, “Multi-Objective Optimization Using Genetic Algorithms: A Tutorial,” Reliability Engineering & System Safety, Vol. 91, No. 9, pp. 992–1007, Sept. 2006.
[17] M.-G. Kim, J. Choi, and M. Kang, “Scheduled Power-Saving Mechanism to Minimize Energy Consumption in IEEE 802.16e Systems,” IEEE Communications Letters, Vol. 12, No. 12, pp. 874–876, Dec. 2008.
[18] W.-H. Kuo and J.-F. Lee, “Multicast Recipient Maximization in IEEE 802.16j WiMAX Relay Networks,” IEEE Transactions on Vehicular Technology, Vol. 59, No. 1, pp. 335–343, Jan. 2010.
[19] J.-M. Liang, Y.-C. Wang, J.-J. Chen, J.-H. Liu, and Y.-C. Tseng, “Energy-Efficient Uplink Resource Allocation for IEEE 802.16j Transparent-Relay Networks,” Computer Networks, Vol. 55, No. 16, pp. 3705–3720, Nov. 2011.
[20] J.-M. Liang, J.-J. Chen, Y.-C. Wang, and Y.-C. Tseng, “A Cross-Layer Framework for Overhead Reduction, Traffic Scheduling, and Burst Allocation in IEEE 802.16 OFDMA Networks,” IEEE Transactions on Vehicular Technology, Vol. 60, No. 4, pp. 1740–1755, May 2011.
[21] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative Diversity in Wireless Networks: Efficient Protocols and Outage Behavior,” IEEE Transactions on Information Theory, Vol. 50, No. 12, pp. 3062–3080, Dec. 2004.
[22] R. Leardi. Nature-inspired Methods in Chemometrics: Genetic Algorithms and Artificial Neural Networks. New York: Elsevier Science, 2003.
[23] Y.-C. Luo, M. Guignard, and C.-H. Chen, “A Hybrid Approach for Integer Programming Combining Genetic Algorithms, Linear Programming and Ordinal Optimization,” Journal of Intelligent Manufacturing, Vol. 12, No. 5–6, pp. 209–519, Oct. 2001.
[24] T. M. Mitchell, Machine Learning. New York: McGraw-Hill, 1997.
[25] A. K. Sadek, W. Su, and K. J. R. Liu, “Multinode Cooperative Communications in Wireless Networks,” IEEE Transactions on Signal Processing, Vol. 55, No. 1, pp. 341–355, Jan. 2007.
[26] A. K. Singh and V. M. Potdar, “Torpid Mode: Hybrid of Sleep and Idle Mode as Power Saving Mechanism for IEEE 802.16j,” IEEE 24th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 577–582, April 2010.
[27] J.-P. Sheu, C.-C. Kao, S.-R. Yang, and L.-F. Chang, “A Resource Allocation Scheme for Scalable Video Multicast in WiMAX Relay Networks,” IEEE Transactions on Mobile Computing, Early Access.
[28] P. Sendin-Rana, F. J. Gonzalez-Castano, F. Gil-Castineira, and P. S. Rodriguez-Hernandez, “Dynamic Multicast Groups with Adaptive Path Selection in MMR WiMAX Networks,” Military Communications Conference, 2010. (MILCOM 2010), pp. 1472–1477, Nov. 2010.
[29] D. Tosi, “An Advanced Architecture for Push Services,” Fourth International Conference on Web Information Systems Engineering Workshops (WISEW 2003), pp. 193–200, Dec. 2003.
[30] L. Tian, Y. Yang, J. Shi, E. Dutkiewicz, and G. Fang, “Energy Efficient Integrated Scheduling of Unicast and Multicast Traffic in 802.16e WMANs,” IEEE Global Telecommunications Conference (GLOBECOM '07), pp. 3478–3482, Nov. 2007.
[31] M. D. Vose. The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge, MA, 1999.
[32] WiMAX. [Online]. Available: http://en.wikipedia.org/wiki/WiMAX
[33] Y. Xiao, “Energy Saving Mechanism in the IEEE 802.16e Wireless MAN,” IEEE Communications Letters, Vol. 9, No. 7, pp. 595–597, July 2005.
[34] C.-Y. Yang, C.-C. Chou, and H.-Y. Wei, “Synchronous Multicast and Broadcast Service in Multi-Rate IEEE 802.16j WiMAX Relay Network,” ACM/Springer Wireless Networks. Vol. 17, No. 8, pp. 1795–1807, Aug. 2011.
[35] Y.-J. Yu, P.-C. Hsiu, and A.-C. Pang, “Energy-Efficient Video Multicast in 4G Wireless Systems,” IEEE Transactions on Mobile Computing, Early Access.
[36] 李蔚澤, 許家華譯,“WiMAX技術原理與應用,” 碁峰, 2007。
[37] 陳冠中, “IEEE 802.16j系統具跨層之動態資源分配與允入控制研究,” 國立台灣科技大學碩士論文, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code