Responsive image
博碩士論文 etd-0905112-150402 詳細資訊
Title page for etd-0905112-150402
論文名稱
Title
無線感測網路具電力平衡之叢集式路由協定
Energy Balancing Cluster-based Routing Protocol for Wireless Sensor Networks
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-08-28
繳交日期
Date of Submission
2012-09-05
關鍵字
Keywords
能量平衡、日冕模型、叢集、路由協定、無線感測網路
energy balancing, corona model, cluster, routing protocol, wireless sensor networks
統計
Statistics
本論文已被瀏覽 5724 次,被下載 151
The thesis/dissertation has been browsed 5724 times, has been downloaded 151 times.
中文摘要
在無線感測網路中採用叢集(cluster)機制能減少能源消耗,延長網路生命週期(network lifetime)並改善可擴充性。在一個典型的叢集式感測網路中,感測節點會被組織為叢集。每個叢集推舉一個叢集頭(cluster head)。叢集頭負責幫叢集成員收集感測的資料,執行資料聚集並藉由多跳躍路徑(multi-hop path)方式透過中繼的叢集頭將資料送達目的端節點。以此方式,採取叢集技術不但縮短傳送距離並且降低能源消耗;然而,在每個叢集中之叢集頭的流量負擔勢必加重。在此情境下,接近目的端節點之叢集頭必定快速地將自身的電力耗盡。為了克服此問題,我們試圖從兩個方面著手進行能源平衡之議題。
在第一個研究主題中,首先我們針對無線感測網路之日冕模型(corona model)進行分析。基於分析之結果,我們發現預先安排不同的初始情境將可實現近似能量平衡之無線感測網路。隨後我們提出Energy-balanced Node Deployment with Balanced Energy(END-BE)機制與Energy-balanced Node Deployment with Maximum Life-Time(END-MLT)機制,依據每個叢集頭之能量消耗來決定每層日冕中之叢集節點密度。模擬結果顯示,採用END-BE機制將可達到近似平衡之能量消耗,採用END-MLT機制將可顯著提昇網路生命週期。
在第二個研究主題中,我們針對日冕結構之無線感測網路發展一套新穎的叢集式路由協定。依據每個叢集頭負擔之網路流量,藉由近似能量消耗平衡之數學分析來決定適當的半徑。模擬結果證實,與Multi-Layer Clustering Routing Algorithm(MLCRA)相比,我們的機制有效地改善網路生命週期、剩餘電量與減少叢集頭轉移次數。
Abstract
Clustering schemes can reduce energy consumption, prolong network lifetime and improve scalability in wireless sensor networks (WSNs). In a typical cluster-based WSN, sensor nodes are organized into clusters. Each cluster elects a cluster head (CH) node. The CH is responsible for collecting the sensed data from cluster members, aggregating data and transmitting data to the sink node via a multi-hop path through intermediate CHs. Thus, the use of cluster techniques not only shortens the transmission distances for sensor nodes but also reduces energy consumption; however, each cluster imposes a larger load on the CH. Under this situation, CHs closer to the sink node tend to use up their batteries faster than those farther away from the sink node due to imbalanced traffics among CHs. To overcome this problem, we contribute to the energy balancing issues in WSNs from two aspects.
In the first work, we first analyze the corona model. Based on analysis results, we found that nearly balanced energy consumption of WSNs can be achieved with the additional help of arranging different initial conditions. We then propose the Energy-balanced Node Deployment with Balanced Energy (END-BE) scheme and Energy-balanced Node Deployment with Maximum Life-Time (END-MLT) scheme, which determine the cluster density for each corona according to the energy consumption of each CH. Simulation results show that energy consumption is nearly balanced by implementing END-BE, and the network lifetime is greatly improved by adopting END-MLT.
In the second work, we development a novel cluster-based routing protocol for corona-structured wireless sensor networks in order to balance the energy consumption among CHs. Based on the relaying traffic of each CH conveys, adequate radius for each corona can be determined through nearly balanced energy depletion analysis, which leads to balanced energy consumption among CHs. Simulation results demonstrate that our clustering approach effectively improves the network lifetime, residual energy and reduces the number of CH rotations in comparison with the Multi-Layer Clustering Routing Algorithm (MLCRA).
目次 Table of Contents
論文審定書 (in Chinese) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
論文審定書 (in English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract (in Chinese) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Abstract (in English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Overviews of Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Flat Routing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Location-based Routing Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Hierarchical Routing Protocol . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Other Energy-efficient Issues in WSNs . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Arranging Cluster sizes and Transmission ranges for WSNs . . . . . . . . 31
2.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.2 Network Initialization Phase . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.3 Cluster Establishment Phase . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5.4 Data Transmission Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.5 Cluster Maintenance Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3 Novel Node Deployment Strategies in Corona Structure for WSNs . . . 47
3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1.1 Assumptions and Network Models . . . . . . . . . . . . . . . . . . . . 47
3.1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Analysis of the Corona Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Energy Consumption Analysis . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.2 Balanced Energy Consumption. . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Network Initialization Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 Total Radius of the Topology . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 The Node Density in each Corona (for END-BE) . . . . . . . . 59
3.3.3 The Node Density in each Corona (for END-MLT). . . . . . . 60
3.4 Cluster Formation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.1 Cluster setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.2 CH Rotation within the Cluster. . . . . . . . . . . . . . . . . . . . . . . 65
3.5 Data Forwarding Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.1 Cluster Coverage Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.6.2 Network Lifetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.6.3 Residual Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4 Efficient Cluster Radius and Transmission Ranges in WSNs. . . . . . . . . 78
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Balanced Energy Depletion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Cluster Formation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.1 Determining the Number of Coronas in Topology . . . . . . . . 87
4.3.2 Calculating the Cluster Radius . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.3 Cluster Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.4 CH-to-CH Transmission Capacity . . . . . . . . . . . . . . . . . . . . 89
4.4 Data Forwarding Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 Intra-cluster Data Forwarding . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.2 Inter-cluster Data Forwarding . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Cluster Maintenance Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.1 CH Rotations in a Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.2 Cross-corona Data Transmissions . . . . . . . . . . . . . . . . . . . . 93
4.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.6.1 Network Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6.2 Residual Energy of each Sensor Node . . . . . . . . . . . . . . . . . 99
4.6.3 Total Number of CH Rotations. . . . . . . . . . . . . . . . . . . . . . . 101
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
參考文獻 References
[1] A.M. Khedr and W. Osamy, Minimum perimeter coverage of query regions in a heterogeneous wireless sensor network, Information Sciences, vol. 181, iss. 15, pp. 3130–3142, Aug. 2011.
[2] J. Li, Q.S. Jia, X. Guan and X. Chen, Tracking a moving object via a sensor network with a partial information broadcasting scheme, Information Sciences, vol. 181, iss. 20, pp. 4733–4753, Oct. 2011.
[3] J.N. Al-Karaki and A.E. Kamal, Routing techniques in wireless sensor networks: a Survey, IEEE Wireless Communications, vol. 11, no. 6, pp. 6–28, Dec. 2004.
[4] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann and F. Silva, Directed diffusion for wireless sensor networking, IEEE/ACM Transactions on Networking, vol. 11, no. 1, pp. 2–16, Feb. 2003.
[5] J. Kulik, W.R. Heinzelman and H. Balakrishnan, Negotiation-based protocols for disseminating information in wireless sensor networks, Wireless Networks, vol. 8, pp. 169–185, Mar. 2002.
[6] Y. Park, D. Seo, J. Yun, C.T. Ryu, J. Kim and J. Yoo, An efficient data-centric storage method using time parameter for sensor networks, Information Sciences, vol. 180, iss. 24, pp. 4806–4817, Dec. 2010.
[7] M.P. Michaelides and C.G. Panayiotou, SNAP: Fault tolerant event location estimation in sensor networks using binary data, IEEE Transactions on Computers, vol. 58, no. 9, pp.1185–1197, Sept. 2009.
[8] Y. Xu, J. Heidemannn and D. Estrin, Geography-informed energy conservation for ad hoc routing, ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), pp. 70–84, July 2001.
[9] Y. Yu, R. Govindan and D. Estrin, Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks, UCLA Computer Science Department Technical Report (TR-01-0023), pp. 1–11, May 2001.
[10] M. Zorzi and R.R. Rao, Geographic random forwarding (GeRaF) for ad hoc and sensor networks: energy and latency performance, IEEE Transactions on Mobile Computing, vol. 2, no. 4, pp. 349–365, Oct. 2003.
[11] W.R. Heinzelman, A. Chandrakasan and H. Balakrishnan, Energy-efficient communication protocol for wireless microsensor networks, Hawaii International Conference on System Sciences (HICSS), pp. 1–10, Jan. 2000.
[12] K. Iwanicki and M.V. Steen, Gossip-based self-management of a recursive area hierarchy for large wireless sensornets, IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 4, pp. 562–576, Apr. 2010.
[13] T. Kim, Y. Lee, J. Sung and D. Kim, Hierarchical network protocol for large scale wireless sensor networks, IEEE Consumer Communications and Networking Conference, pp. 1–2, Jan. 2010.
[14] S. Lindsey and C. Raghavendra, PEGASIS: Power-efficient gathering in sensor information systems, IEEE Aerospace Conference, vol. 3, pp. 1125–1130, Mar. 2002.
[15] Z. Zhang, M. Ma and Y. Yang, Energy-efficient multi-hop polling in clusters of two-leveled heterogeneous sensor networks, IEEE Transactions on Computers, vol. 57, no. 2, pp. 231–245, Feb. 2008.
[16] A. Ghosh, A. Halder, M. Kothari and S. Ghosh, Aggregation pheromone density based data clustering, Information Sciences, vol. 178, iss. 13, pp. 2816–2831, July 2008.
[17] Z. He, B.-S. Lee and X.S. Wang, Aggregation in sensor networks with a user-provided quality of service goal, Information Sciences, vol. 178, iss. 9, pp. 2128–2149, May 2008.
[18] W.R. Heinzelman, A. Chandrakasan and H. Balakrishnan, An application-specific protocol architecture for wireless microsensor networks, IEEE Transactions on Wireless Communications, vol. 1, pp. 660–670, Oct. 2002.
[19] O. Younis and S. Fahmy, HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks, IEEE Transactions on Mobile Computing, vol. 3, no. 4, pp. 366–379, Oct.-Dec. 2004.
[20] B. Krishnamachari, D. Estrin and S. Wicker, Modeling data centric routing in wireless sensor networks, IEEE International Conference on Computer Communications (INFOCOM), pp. 2–14, June 2002.
[21] M.O. Farooq, A.B. Dogar and G.A. Shah, MR-LEACH: Multi-hop routing with low energy adaptive clustering hierarchy, IEEE International Conference on Sensor Technologies and Applications (SENSORCOMM), pp.262–268, July 2010.
[22] H.M. Abdulsalam and L.K. Kamel, W-LEACH: Weighted low energy adaptive clustering hierarchy aggregation algorithm for data streams in wireless sensor networks, IEEE International Conference on Data Mining Workshops (ICDMW), pp. 1–8, July 2010.
[23] J. Hong, J. Kook, S. Lee, D. Kwon and S. Yi, T-LEACH: The method of threshold-based cluster head replacement for wireless sensor networks, Information Systems Frontiers, pp.513–521, Nov. 2009.
[24] C.S. Lin, C.M. Chen, T.J. Chan and T.R. Chen, A forwarding station integrated the low energy adaptive clustering hierarchy in ad-hoc wireless sensor networks, WSEAS Transactions on Communications, vol. 7, no. 8, pp.658–667, July 2009.
[25] Y. Liu, J. Gao, Y. Jia and L. Zhu, A cluster maintenance algorithm based on LEACH-DCHS protocol, IEEE International Conference on Networking, Architecture, and Storage, pp. 165–166, June 2008.
[26] V. Loscri, G. Morabito and S. Marano, A two-levels hierarchy for low energy adaptive clustering hierarchy (TL-LEACH), IEEE Vehicular Technology Conference (VTC), pp. 1809–1813, Sept. 2005.
[27] F. Xiangning and S. Yulin, Improvement on LEACH protocol of wireless sensor network, International Conference on Sensor Technologies and Applications, pp. 260–264, Oct. 2007.
[28] M.B. Yassein, A. Al-zou'bi, Y. Khamayseh and W. Mardini, Improvement on leach protocol of wireless sensor network (vleach), International Journal of Digital Content Technology and its Applications, vol. 3, no. 2, pp.132–136, June 2009.
[29] S.D. Muruganathan, D.C.F. Ma, R.I. Bhasin and A.O. Fapojuwo, A centralized energy-efficient routing protocol for wireless sensor networks, IEEE Communications Magazine, vol. 43, no. 3, pp. 8–13, Mar. 2005.
[30] S. Ghiasi, A. Srivastava, X. Yang and M. Sarrafzadeh, Optimal energy aware clustering in sensor networks, Sensors Magazine, MDPI, vol. 2, no. 7, pp. 258–269, July 2002.
[31] Y. Liu, N. Xiong, Y. Zhao, A.V. Vasilakos, J. Gao and Y. Jia, Multi-layer clustering routing algorithm for wireless vehicular sensor networks, IET Communications, vol. 4, iss. 7, pp. 810–816, Apr. 2010.
[32] X. Wu, G. Chen and S. Das, Avoiding energy holes in wireless sensor networks with nonuniform node distribution, IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 5, pp. 710–720, May 2008.
[33] S. Bandyopadhyay and E.J. Coyle, An energy efficient hierarchical clustering algorithm for wireless sensor networks, IEEE International Conference on Computer Communications (INFOCOM), pp. 1713–1723, Mar. 2003.
[34] Y. Wang, H. Wu, R. Nelavelli and N. F. Tzeng, Balance based energy-efficient communication protocols for wireless sensor networks, IEEE International Conference Workshops on Distributed Computing Systems, pp. 85, July 2006.
[35] C. Alippi, R. Camplani and M. Roveri, An adaptive LLC-based and hierarchical power-aware routing algorithm, IEEE Transactions on Instrumentation and Measurement, vol. 58, no. 9, pp. 3347–3357, Sept. 2009.
[36] J. Li and P. Mohapatra, An analytical model for the energy hole problem in many-to-one sensor networks, IEEE Vehicular Technology Conference (VTC), pp. 2721–2725, Sept. 2005.
[37] Y. Liu and W. Guo, A balanced energy depletion strategy for the energy hole problem in wireless sensor networks, Chinese Journal of Electronics, vol. 18, no. 3, pp. 535–538, July 2009.
[38] S. Olariu and I. Stojmenovic, Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting, IEEE International Conference on Computer Communications (INFOCOM), pp. 1–12, Apr. 2006.
[39] S.C. Ergen and P. Varaiya, Optimal placement of relay nodes for energy efficiency in sensor networks, IEEE International Conference on Communications (ICC), pp. 3473–3479, June 2006.
[40] I. Howitt and J. Wang, Energy balanced chain in distributed sensor networks, Wireless Communications and Networking Conference (WCNC), vol. 3, pp. 1721–1726, Mar. 2004.
[41] A. Ababnah and B. Natarajan, Optimal control-based strategy for sensor deployment, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 41, no. 1, pp. 97–104, Jan. 2011.
[42] J. Lian, K. Naik and G.B. Agnew, Data capacity improvement of wireless sensor networks using non-uniform sensor distribution, International Journal of Distributed Sensor Networks, vol. 2, no. 2, pp. 121–145, Apr.-June 2006.
[43] Y. Liu, H. Ngan and L.M. Ni, Power-aware node deployment in wireless sensor networks, International Journal of Distributed Sensor Networks, vol. 3, pp. 225–241, Apr. 2007.
[44] S. Olariu and I. Stojmenovic, Data-centric protocols for wireless sensor networks, Handbook of Sensor Networks: Algorithms and Architectures, pp. 417–456, Sept. 2005.
[45] W.K. Lai, C.S. Fan and L.Y. Lin, Arranging cluster sizes and transmission ranges for wireless sensor networks, Information Sciences, vol. 183, iss. 1, pp. 117–131, Jan. 2012.
[46] H. Shen, Finding the k most vital edges with respect to minimum spanning tree, Acta Informatica, vol. 36, iss. 5, pp. 405–424, Sept. 1999.
[47] V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen and M. Welsh, Simulating the power consumption of large-scale sensor network applications, International Conference on Embedded Networked Sensor Systems (SenSys), pp. 188–200 , Nov. 2004.
[48] O. Landsiedel, K. Wehrle and S. Gotz, Accurate prediction of power consumption in sensor networks, IEEE Workshop on Embedded Networked Sensors (EmNetS-II), pp. 37–44, May 2005.
[49] D. Schmidt, M. Kramer, T. Kuhn and N. Wehn, Energy modelling in sensor networks, Advances in Radio Science, vol. 5, pp. 347–351, June 2007.
[50] S. Soro and W.B. Heinzelman, Prolonging the lifetime of wireless sensor networks via unequal clustering, IEEE International Parallel and Distributed Processing Symposium, pp. 236–243, Apr. 2005.
[51] C. Li, M. Ye, G. Chen and J. Wu, An energy-efficient unequal clustering mechanism for wireless sensor networks, IEEE International Conference on Mobile Adhoc and Sensor Systems Conference, pp. 1–8, Nov. 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code