Responsive image
博碩士論文 etd-0906102-183200 詳細資訊
Title page for etd-0906102-183200
論文名稱
Title
南海北部海域之沉降顆粒及沉積物:顆粒通量與鉛-210之分佈
Settling Particulates and Sediments in the Northern South China Sea: Distributions of Mass Flux and Pb-210
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-07-29
繳交日期
Date of Submission
2002-09-06
關鍵字
Keywords
南海北部、鉛-210、沉降顆粒、顆粒通量
flux, Pb-210, Settling Particulates, Northern South China Sea
統計
Statistics
本論文已被瀏覽 5831 次,被下載 1699
The thesis/dissertation has been browsed 5831 times, has been downloaded 1699 times.
中文摘要
本研究是「南海生地化整合研究」(SIBEX;South China Sea Integrated Biogeochemical Experiments)首次南海沉積物收集器錨錠的結果。兩串列沉積物收集器分別在台灣西南海域(M1),及南海海盆北部(M2)進行錨錠,並在M2 的南方採集岩心。其主要目的在探討不同深度之沉降顆粒通量及Pb-210 活性的時空變化,並且量測岩心之沉積速率,以瞭解顆粒物
質在南海生地化作用所扮演的角色及分佈特徵。
M1 及M2 在不同深度之顆粒通量大部份由淺至深逐漸增加。在時序相對變化上,M1 顆粒通量的變化幅度比M2 大,其水深948 m 的顆粒通量時序變化最大,最大值可達2025mg/m2/d。除少數例外,深層(948 m)收集器之通量皆高於淺層(248 m)者,這可能是顆粒側向傳輸的影響。M2 站水深240 m 的顆粒通量較其下方各深度高且變化也較大。較深的三組收集器(1240(1240m、2240 m 及3240 m)在錨錠期內所得之顆粒通量時序變化幅度甚小,且有同步性。M1 及M2 之各深度平均顆粒通量範圍為199~554mg/m2/d,均比前人在南海所觀測者(平均為76~104 mg/m2/d)高,但卻與陸源輸入南海之平均顆粒通量(280 mg/m2/d)相當,表示在約10年間顆粒通量有極大的改變,故仍需繼續作較長期的錨錠研究。
M1及M2兩錨錠站沉降顆粒Pb-210 之活性,在時序變化上大致各有同步性的趨勢,且隨深度增加,此快速往深處增加的現象反映沉降顆粒之清除效率在低濃度狀況下相當高。兩站之燒失量(L.O.I.)皆與Pb-210 之活性稍成反比,顯示Pb-210 可能被生物顆粒或有機質所排斥。而M1 及M2 在水深約240 m 之顆粒通量皆與L.O.I.呈正比關係,表示淺層的高顆粒通量可
能是生物顆粒或有機質所造成。
本研究區域之沉積速率藉由岩心超量Pb-210 分佈推算,其值介於9.01~23.13 cm/100yr,如此快速之沉積速率是受混合作用與外來物質側向堆積的影響。由超量Pb-210 所穿透的岩心深度推測,表層沉積物均已受擾動與混合。由沉積物超量Pb-210 存量所推測之Pb-210 通量遠大於由收集器所觀測者,顯示有Pb-210 由他處之表層沉積物經側向輸入而堆積。由收集器之平均顆粒通量粗估其對應之沉積速率約為10 cm/ka,比由超量Pb-210 所估者低一級數。上層沉積物因受強烈擾動且與側向輸入之沉積物混合堆積而使由超量Pb-210 法所得之沉積速率高估約10 至20 倍。




Abstract
This study reports the first sediment trap mooring results obtained
under the SIBEX program (South China Sea Integrated Biogeochemical
Experiments). Two strings of sediment traps were deployed respectively
at M1 located to the southwest of Taiwan, and M2 in the northern basin
of the South China Sea (SCS). Box cores were also taken at several
sites to the south of M2. The main purposes are to measure settling
particulate fluxes at various depths for the studies of temporal and spatial
variations of the particulate flux and 210Pb activity. The box cores were
used to determine the sedimentation rates. These are to enhance our
understanding of the characteristics of the particulate distribution and the
roles the particulate matter plays in the biogeochemical processes in the
SCS.
Particulate fluxes measured from different depths at M1 and M2
generally increase with depth. In temporal variation, M1 has higher
amplitudes than M2, with highest amplitudes at 948 m where highest flux
(2025 mg/m2/d) was observed. The particulate flux at 948 m has higher
values than at 248 m, probably due to lateral transport. At M2, the
particulate flux at 240 m has higher values with greater amplitudes than at
greater depths, i.e. 1240 m, 2240 m and 3240 m, where their particulate
fluxes show a synchronous trend with small amplitudes in temporal
variation. The time-averaged particulate flux for each trap ranges from
199 to 554 mg/m2/d, consistently higher than previous observations
(76~104 mg/m2/d). However, our values are comparable to the mean
particulate flux (280 mg/m2/d) estimated from terrigenous inputs. The
apparent changes in particulate flux in the SCS over the past ten years
warrants further investigations.
The temporal variations of Pb-210 show a synchronous trend and a
rapid increase with depth as observed at M1 and M2. This rapid
increase of Pb-210 with depth reflects effective scavenging by sinking
particulates although particulate concentrations are low. The loss on
ignition (L.O.I.) at M1 and M2 was inversely correlated with Pb-210,
indicating that Pb-210 was expelled from biogenic particulates or organic
matter. The particulate fluxes around 240 m at M1 and M2 were
generally positively correlated with the L.O.I., suggesting that the high
particulate fluxes are probably contributed by biogenic particulates or
organic matter.
The sedimentation rates as determined from excess Pb-210 profiles
range from 9.01~23.13 cm/100yr. These rapid sedimentation rates
reflect the effect of mixing and additional sediments accumulated through
lateral transport. The surface layers of these cores were subject to
perturbation and mixing, based on the penetration depths of the excess
Pb-210. The Pb-210 flux estimated from the inventory of excess Pb-210
in the sediments is much greater than that observed from the traps,
suggesting that additional Pb-210 has been accumulated via lateral
transport and slumping of nearby surface sediments. Based on the mean
particulate flux observed, one may roughly estimate the corresponding
sedimentation rate of about 10 cm/ka, which is an order of magnitude
lower than those determined by the excess Pb-210 method. Because the
upper layers of the sediments have been strongly disturbed and mixed
with the additional sediments accumulated through lateral transport, the
sedimentation rates as determined by the excess Pb-210 method are
probably over-estimated by a factor of 10 to 20.




目次 Table of Contents
摘要…………………………………………………………… I
Abstract ………………………………………………………… III
目錄…………………………………………………………… V
圖目錄………………………………………………………… VII
表目錄………………………………………………………… VIII
一、緒論……………………………………………………… 1
二、材料及方法……………………………………………… 4
2-1 採樣區域………………………………………… 4
2-2 沉降顆粒的處理………………………………….. 4
2-3 岩心的處理……………………………………….. 6
2-4 燒失量(L.O.I.) …………………………………… 6
2-5 Pb-210 活性分析方法…………………………….. 6
2-6 Po-210 活性分析方法……….…………………… 10
2-7 Po-210 活性修正方法……………………………... 11
2-8 顆粒粒徑分析…………………………………..... 12
三、結果與討論……………………………………………….. 14
3-1 顆粒通量……..……………………………………… 14
3-1.1 M1 各深度顆粒通量時序變化……………… 14
3-1.2 M2 各深度顆粒通量時序變化……………… 14
3-1.3 M1 及M2 各深度平均顆粒通量比較………. 21
3-1.4 陸源輸入之顆粒通量……………………….. 23
3-2 濕篩觀察描逑與燒失量(L.O.I.)……………………… 23
3-2.1 濕篩觀察描逑...…………………………..…. 23
3-2.2 燒失量(L.O.I.)………………………………. 24
3-3 沉降顆粒Pb-210 之活性變化………………………. 26
3-3.1 M1 各深度Pb-210 活性之時序變化………. 26
3-3.2 M2 各深度Pb-210 活性之時序變化………. 26
3-3.3 M1 及M2 各深度的平均Pb-210 活性比較.. 29
3-4 Pb-210 之活性與顆粒通量及L.O.I.的相關性……… 29
3-5 岩心之Pb-210 活性分佈……………………………... 32
3-5.1 有機質及含水率的變化……….………….... 32
3-5.2 粒徑分佈………………………….…………. 37
3-5.3 岩心Pb-210 與Po-210 之活性分佈………… 37
3-5.4 與懸浮顆粒及沉降顆粒之比較……………… 44
3-6 沉積速率與混合速率之分佈………………………… 48
3-6.1 沉積速率之分佈……………………………. 48
3-6.2 混合速率之分佈…………………………….. 53
3-7 沉積物超量Pb-210 之通量………………………….. 54
3-7.1 起始超量Pb-210 之活性…………………… 54
3-7.2 Pb-210 之存量(inventory)和通量(flux)….… 54
四、結論.…………………….……………………………….. 57
參考文獻………………………………………………………... 59
附錄1 粒徑組成分析之比較實驗……………………………... 65
圖目錄
頁碼
圖1 研究區域與參考文獻之採樣位置圖………………………. 2
圖2 Pb-210 等活性射源因硫酸鉛的自我吸收效應而下降之效
率校正曲線…………………..……………………………. 9
圖3 M1 顆粒通量之時序變化…………………………………… 19
圖4 M2 顆粒通量之時序變化…………………………………… 20
圖5 M1 及M2 各深度之平均顆粒通量圖……………………… 22
圖6 M1 及M2 沉降顆粒於各深度之L.O.I.分佈圖…………….. 25
圖7 M1 沉降顆粒Pb-210 活性之時序變化……………………… 27
圖8 M2 沉降顆粒Pb-210 活性之時序變化……………………… 28
圖9 M1 及M2 沉降顆粒之Pb-210 與顆粒通量關係圖……….. 30
圖10 M1 及M2 沉降顆粒之Pb-210 與L.O.I.關係圖…………. 31
圖11 各岩心之含水率及L.O.I.之垂向分佈圖…………………. 36
圖12 BX-C 及BX-D 各粒徑組組成之垂向分佈圖……………. 41
圖13 BX-E 各粒徑組組成之垂向分佈圖………………………. 42
圖14 BX-C 總Pb-210 與Po-210 的剖面及超量Pb-210 的自然
對數分佈…………………………………………………... 43
圖15 BX-D 總Pb-210 剖面及超量Pb-210 的自然對數分佈… 45
圖16 BX-E 總Pb-210 剖面及超量Pb-210 的自然對數分佈..… 46
表目錄
頁碼
表1.1 沉積物時序收集器於M1 及M2 兩錨錠站之施放與回收
相關資料…………………………………………………. 5
表1.2 箱型岩心BX-C、BX-D 及BX-E 採樣位置及相關資料5
表2.1 M1 錨碇串列不同深度之顆粒通量、L.O.I.和Pb-210 活性15
表2.2 M2 錨碇串列不同深度之顆粒通量、L.O.I.和Pb-210 活性17
表3 M1、M2 與Wiesner et. al.(1996)之平均顆粒通量比較…… 22
表4.1 BX-C 之含水率、L.O.I.、Pb-210 及Po-210 分析結果…… 33
表4.2 BX-D 之含水率、L.O.I.和Pb-210 分析結果………..…… 34
表4.3 BX-E 之含水率、L.O.I.和Pb-210 分析結果….…..……… 35
表5.1 BX-C 之粒徑組成垂向分佈………………………………. 38
表5.2 BX-D 之粒徑組成垂向分佈……………………………… 39
表5.3 BX-E 之粒徑組成垂向分佈………………………………. 40
表6.1 表層沉積物之Pb-210 及Po-210 活性…………………… 47
表6.2 M1 及M2 各深度之沉降顆粒Pb-210 平均活性…………. 47
表6.3 懸浮顆粒在不同深度之Pb-210 與Po-210 比活性……… 47
表7.1 由簡單模式計算所得之沉積速率、起始超量Pb-210、超
量Pb-210 存量及通量值…………………………………. 51
表7.2 M1 及M2 之Pb-210 平均沉降通量……………………… 51
表8 南海北部深水沉積物的沉積速率值……………………….. 52
參考文獻 References
參考文獻
中文部份
朱燐烽,2000,南沖繩海槽西端之鉛-210 與釙-210:分佈型態及其活性
不平衡現象,國立中山大學海洋地質及化學研究所碩士論文。
李粹中,1991,南海深海沉積物14C 測年和近代沉積物速率的研究。海
洋學報,12(3),340-346。
林慧玲、王薇喬、林黛君、鍾玉嘉、劉祖乾及洪國瑋,2002,台灣西南
海域的生物源沉積顆粒傳輸,海峽兩岸第五屆台灣鄰近海域洋科
學研討會論文集,壁報。
邱薰慧,2000,台灣周圍海域浮游生物之釙-210 和鉛-210 含量及釙-210
之富集現象,國立中山大學海洋地質及化學研究所碩士論文。
吳宗恩,2002,南海北部海域水體中鉛-210 與釙-210 活性不平衡狀態,
國立中山大學海洋地質及化學研究所碩士論文。
洪國瑋,2000,台灣東北海域陸坡區之沉降顆粒:通量、粒徑分佈及
鉛釙不平衡,國立中山大學海洋地質及化學研究所博士論文。
張婉琪,1993,台灣東北海域沉積物鈾釷系列核種之地球化學,國立
中山大學海洋地質研究所碩士論文。
陳平,1996,台灣海域及高雄地區大氣懸浮微粒之粒徑分析與鉛-210
活度分佈,國立中山大學海洋地質研究所碩士論文。
陳建芳、M. G. Wiesner, H. K. Wong, 鄭連福、鄭士發和徐魯強,1999,
南海顆粒有機碳通量的垂向變化及早期降解作用的標志物。中國
科學,D 輯。29(4),372-378。
陳毓蔚和桂訓唐,1998,南沙群島海區沉積物沉積速率,南沙群島海區
同位素地球化學研究,科學出版社,2,20-29。
鐘健一,2000,南沖繩海槽時序沉積物收集器之錨錠:顆粒通量及鉛-210
研究,國立中山大學海洋地質及化學研究所碩士論文。
蔡守文,1989,台灣海峽沉積物鉛-210 定年法之應用,中山大學海洋
地質研究所碩士論文。
蔡雅婷,1999,鉛-210 及鈾釷同位素在沉降顆粒中不同粒徑上之分佈
及其意義,國立中山大學海洋地質及化學研究所碩士論文。
英文部份
Anderson, R. F. and S. L. Schiff, 1987. Determining sediment
accumulation and mixing rates using 210Pb, 137Cs, and other tracers:
Problems due to postdepositional mobility or coring artifacts. Can. J.
Fish. Aquat. Sci., 44, 231-250.
Benninger, L. K. and S. Krishnaswami, 1981. Sedimentary processes in
the inner New York Bight:evidence from excess Pb-210 and Pu-239,
Pu-240. Earth Planet. Sci. Lett., 53, 158-174.
Buesseler, K. O., H. D. Livingston and E. R. Sholkovitz, 1985. Pu-239,
240 and excess Pb-210 inventories along the shelf and slope of the
northeast USA. Earth and Planet. Sci. Lett., 76, 10-22.
Chung, Y. and G. W. Hung, 2000. Particulate fluxes and transports on the
slope between the southern East China Sea and the South Okinawa
Trough. Cont. Shelf Res., 20, 571-597.
Chung, Y. and H. Craig, 1983. Pb-210 in the Pacific: the GEOSECS
measurements of particulate and dissolved concentrations. Earth
and Planet. Sci. Lett., 65, 406-432.
Chung, Y., and R. Finkel, 1988. 210Po in the western Indian Ocean:
distribution, disequilibria, and partitioning between the dissolved and
particulate phases. Earth and Planet. Sci. Lett., 88, 232-240.
Chung, Y. and W. C. Chang, 1995. Pb-210 fluxes and sedimentation rates
on the lower continental slope between and the south Okinawa
Trough. Cont. Shelf Res., 15, 149-164.
Cochran, J. K. and S. Krishnaswami, 1980. Radium, thorium, uranium
and Pb-210 in deep-sea sediments and sediment pore waters from the
North Equatorial Pacific. Amer. J. Sci., 280, 849-889.
Cochran, J. K., 1985. Particle mixing rates in sediments of the eastern
equatorial Pacific: Evidence from Pb-210, Pu-239, 240 and Cs-137
distributions at MANOP sites. Geochim. et Cosmochimi. Acta, 49,
1195-1210.
Heussner, S. C. Ratti and J. Carbonne, 1990. The PPS-3 time-series
sediment trap and the trap sample processing techniques used during
the ECOMARGE experiment. Cont. Shelf Res., 10, 943-958.
Heyraud, M. and R. D. Cherry, 1983. Correlation of Po-210 and Pb-210
enrichments at the sea-surface microlayer with neuston biomass.
Cont. Shelf Res., 1, 283-293.
Krishnaswami, S., D. Lal, J. M. Martin and M. Maybeck,
1971.Geochronology of lake sediments. Earth and Planet. Sci. Lett.,
11, 407-414.
Legeleux F., J. L. Reyss, H. Etcheber and A Khripounoff, 1996. Fluxes
and balance of 210Pb in the tropical northeast Atlantic. Deep-Sea
Res., 43, 1321-1342.
Nittrouer, C. A., D. J. DeMaster, B. A. Mckee, N. H. Cutshall and I. L.
Larsen, 1984. The effect of sediment mixing on Pb-210 accumulation
rates for the Washington continental shelf. Marine Geology, 54,
201-221.
Sarin, M. M. S. Krishnaswami, K. Tarun, V. Ramaswamy and V. Ittekkot,
2000. Settling fluxes of U- and Th-series nuclides in the Bay of
Bengal: results from time-series sediment trap studies. Deep Sea
Res., Part I, 47, 1961-1985.
Shaw, P. T., 1996. Winter upwelling off Luzon in the northeastern South
China Sea. J. Geophys. Res., 101, 16435-16448.
Shaw, P. T. and S. Y. Chao, 1994. Surface circulation in the South China
Sea. Deep Sea Res., 41, 1663-1683.
Smith, C. R . R. H. Pope, D. J. Demaster and L. Magarrd, 1993.
Age-dependent mixing of deep-sea sediments. Geochimica et
Cosmochimi. Acta, 57, 1473-1488.
Tsai, S. W. and Y. Chung, 1989. Pb-210 in the sediments of Taiwan Strait.
Acta Oceanogr. Taiwan., 22, 1-13.
Turekian, K. K., L. K. Benninger and E. P. Dion, 1983. 7Be and 210Pb
total deposition fluxes at New Haven, Connecticut and at Bermuda J.
Geophys. Res., 20, 5411-5415.
Wiesner, M. G., L. F. Zheng, H. K. Wong, Y. Wang and W. Chen, 1996.
Fluxes of particulate matter in the South China Sea, in: Particle Flux
in the Ocean. SCOPE Report 57, 293-312, eds V. Ittekot, P. Schafer,
SS. Honjo and P. J. Depetris.
Wentworth, C. K., 1922. A scale of grade and class terms for classic
sediments. Jour. Geology, 30, 377-392.
Wyrtki, K., 1961. Physical Oceanography of the Southeast Asian Waters,
NAGA Report, 2, Scripps Institution of Oceanography. La Jolla,
California, 1995pp.
Yang, H. S., Y. Nozaki, H. Sakai, Y. Nagaya and K. Nakamura, 1986.
Natural and man-made radionuclide distributions in Northwest
Pacific deep-sea sediments:rate of sedimentation, bioturbation and
Ra-226 migration. Geochem. J., 20, 29-40.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code