Responsive image
博碩士論文 etd-0907110-165256 詳細資訊
Title page for etd-0907110-165256
論文名稱
Title
腎素在大鼠孤立束核中調控心臟血管之分子機制探討
The Molecular Mechanism of Renin on Cardiovascular Regulation in the Nucleus Tractus Solitarii of Rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
144
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-29
繳交日期
Date of Submission
2010-09-07
關鍵字
Keywords
腎素、乙型血管張力素、孤立束核
angiotensin II, Renin, nucleus tractus solitarii
統計
Statistics
本論文已被瀏覽 5674 次,被下載 0
The thesis/dissertation has been browsed 5674 times, has been downloaded 0 times.
中文摘要
腎素-血管張力素系統 (renin-angiotensin system, RAS) 在哺乳動物調控血壓與鹽類平衡上面十分重要。過去文獻指出大鼠大腦中具有獨立的腎素-血管張力素系統,腎素為腎素-血管張力素系統中產生乙型血管張力素 (angiotensin II, Ang II) 的首要影響因子,而乙型血管張力素不管在周邊或是中樞神經皆有調控生理機能的作用。目前已有許多文獻報導腎素確實存在於大腦之中,而之前的文獻也指出腎素會透過以血管張力素為主和其他路徑來影響血壓。其中以血管張力素為主的路徑主要是透過與乙型血管張力素第一型接受器 (angiotensin II type-1 receptors, AT1R) 的結合來達成,而另一路徑則是透過與腎素接受器結合 [(pro)renin receptor, PRR] 來達成。文獻指出乙型血管張力素第一型接受器與腎素接受器都大量表現在對於中樞調控血壓上十分重要的孤立束核 (nucleus tractus solitarii, NTS)。更有文獻指出乙型血管張力素會影響一氧化氮在孤立束核的釋放,而一氧化氮對於孤立束核在中樞心臟血管系統之調控扮演極重要的角色。由此項結果可得知腎素在孤立束核中扮演著調控心血管系統的角色。但腎素如何調控血壓的分子機制目前還尚未明瞭。本研究想進一步探討腎素在孤立束核中心臟血管調控之分子機制。單側微量注射腎素到 WKY 大鼠的孤立束核中,產生明顯的血壓下降與心博舒緩現象。前處理非特異性一氧化氮合成酶抑制劑 (L-NAME) ,選擇性內皮性一氧化氮合成酶 (eNOS) 抑制劑 (L-NIO),第四型Akt 抑制劑和PI3K 抑制劑 (LY294002) 顯著地抑制了腎素所引起的心血管作用。但是神經性一氧化氮合成酶 (nNOS) 專一性抑制劑 (Vinyl-L-NIO) 和 MEK抑制劑 (PD98059) 並不會引起顯著的變化。西方墨點分析結果顯示腎素會引起內皮性一氧化氮合成酶和Akt 磷酸化作用,而神經性一氧化氮合成酶與ERK1/2 則沒有此現象。而前處理LY294002 會顯著地降低內皮性一氧化氮合成酶和Akt 磷酸化作用。這部分的結果顯示腎素所引起的心血管作用是透過PI3K-Akt-eNOS傳遞路徑來活化內皮性一氧化氮合成酶,最後促使一氧化氮增加來影響血壓。進一步前處理腎素專一性抑制劑 (aliskiren),血管張力素轉換酶抑制劑 (lisinopril),第一型血管張力素接受器阻斷劑 (losartan) 和細胞內鈣離子抑制劑 (BAPTA-AM) 顯著地抑制了腎素所引起的心血管作用。但是Gβγ 蛋白抑制劑 (gallein),PLC 抑制劑 (U73122) ,calmodulin抑制劑(W-7) 和 腎素接受器阻斷劑 (handle region peptide) 並不會引起顯著的變化。這部分的結果顯示腎素所引起的心血管作用主要是透過第一型血管張力素接受器。我們的結果顯示腎素是透過AT1R-PI3K-Akt 傳遞路徑,而後導致的內皮性一氧化氮合成酶活性增加來達到調控血壓的作用。
Abstract
The renin-angiotensin system (RAS) is critical for the control of blood pressure (BP) and salt balance in mammals. Studies reveal that local RAS are present in the rat brain and renin is the first effector of the brain RAS for generating angiotensin II (Ang II) which exerts diverse physiological actions in both peripheral and central nervous system. The existence of renin within the brain has now been demonstrated by numerous studies. Previous studies suggest that renin may go through angiotensin-dependent and independent pathway to influence vascular tone, by Ang II type 1 receptor (AT1R) and renin specific (pro)renin receptor (PRR), respectively. Studies also indicate that AT1R and PRR are highly expressed in the nucleus tractus solitarii (NTS), which is important for central feedback regulation of BP. Further studies have shown that Ang II contributes to the release of NO, which plays an important role in cardiovascular regulation in the NTS. These results indicate that renin plays cardiovascular modulatory role in the NTS. However, the mechanisms how renin modulate cardiovascular functions in the NTS remained unclear. In the present study, I investigated the molecular mechanisms of renin-induced cardiovascular effects in the NTS. Unilateral microinjection of renin into the NTS of WKY rats produced prominent depressor and bradycardic effects. Pretreatment with a non-selective NOS inhibitor L-NAME, eNOS specific inhibitor L-NIO, Akt inhibitor IV, and PI3K inhibitor LY294002 significantly attenuated the cardiovascular response evoked by renin, whereas nNOS specific inhibitor Vinyl-L-NIO and MEK inhibitor PD98059 did not cause significant changes. Western blot studies showed renin increased eNOSS1177 and AktS473 phosphorylation instead of nNOSS1416 and ERK1/2T202/Y204 phosphorylation, and pretreatment with LY294002 blocked renin-induced eNOSS1177 and AktS473 phosphorylation. These results indicated that renin might go through PI3K-Akt-eNOS pathway to increase eNOS activity and ultimately result in NO release. The cardiovascular effects of renin were also attenuated by renin specific inhibitor aliskiren, angiotensin converting enzyme inhibitor lisinopril, AT1R antagonist losartan, and intracellular Ca2+ chelator, BAPTA-AM instead of G protein βγ subunit inhibitor gallein, PLC inhibitor U73122, calmodulin inhibitor (W-7) and (pro)renin receptor blocker, handle region peptide. These results indicated that renin mainly through AT1R to regulate BP. Therefore, my results indicated that the modulation of cardiovascular effects of renin in the NTS involves AT1R-PI3K-Akt pathway to activate eNOS activation.
目次 Table of Contents
1. Introduction………………………………………………………….....……….1
1.1 Renin and prorenin……………………………………………………………1
1.2 Angiotensin II and its receptors……………………………………………….3
1.3 Characteristics of the (pro)renin receptor……………………………………..5
1.4 Role of (pro)renin receptor in cardiovascular system and brain………...........6
1.5 Renin-angiotensin system in brainstem nuclei………………………………..7
1.6 Cardiovascular regulation by brainstem nuclei……………………………….9
1.7 Nitric oxide signaling in central cardiovascular regulation………………….11
2. Specific Aims………………………………………………………………….14
3. Materials and Methods…………………………………...………………….15
3.1 Reagents and chemicals…………………………………………….……….15
3.2 Animals……………………………………………………………………...15
3.3 Experimental Procedures……………………………………………………16
3.4 Microinjection of drugs……………………………………………………..18
3.5 Baroreflex measurement……………………………………………....…….18
3.6 Intracerebroventricular measurement……………………………………….19
3.7 Blood pressure measurement………………………………………………..20
3.8 Western blot analysis………………………………………………………...20
3.9 Determination of NO in NTS………………………...……………………....22
3.10 Immunohistochemistry analysis……………………………………….......22
3.11 Determination of renin in NTS………………………………………..…..24
3.12 Statistical analysis……………………………………………………...….26
4. Results……………………………………………………………...…….…..…27
4.1 Renin had cardiovascular effects in the NTS…………………………… …..27
4.2 Prior administration of NOS inhibitor, L-NAME, significantly attenuated the cardiovascular responses of renin in the NTS of WKY rats…...…………….......27
4.3 Renin increased NO production in the NTS of WKY rats………….…….…28
4.4 Prior administration of eNOS inhibitor, L-NIO, significantly attenuated the cardiovascular responses of renin in the NTS of WKY rats……………………..28
4.5 Renin induced eNOSS1177 phosphorylation in the NTS of WKY rats……….29
4.6 Prior administration of Vinyl-L-NIO did not attenuate the cardiovascular effects of renin in the NTS of WKY rats………………...………………………30
4.7 Renin did not increase nNOSS1416 phosphorylation and iNOS protein expression in the NTS of WKY rats……………………………………………..30
4.8 Prior administration of Akt inhibitor IV significantly attenuated the cardiovascular responses of renin in the NTS of WKY rats…………….……….31
4.9 Renin increased AktS473 phosphorylation in the NTS of WKY rats…...……. 31
4.10 Prior administration of PI3K inhibitor, LY294002, significantly attenuated the cardiovascular responses of renin in the NTS of WKY rats……………........32
4.11 Attenuation of renin induced eNOSS1177 phosphorylation by LY294002 in the NTS of WKY rats……………………………………………………………..….33
4.12 Attenuation of renin induced AktS473 phosphorylation by LY294002 in the NTS of WKY rats……...……………………………………………………...….33
4.13 Prior administration of PD98059 did not attenuate the cardiovascular responses of renin in the NTS of WKY rats……………………………..……….34
4.14 Renin did not induce ERKT202/Y204 phosphorylation in the NTS of WKY rats………………………………………………………………………………..34
4.15 Prior administration of W-7 did not attenuate the cardiovascular responses of renin in the NTS of WKY rats……………..…………….................................…35
4.16 Prior administration of renin inhibitor, aliskiren, significantly attenuated the cardiovascular responses of renin in the NTS of WKY rats………………...…...36
4.17 Prior administration of ACE inhibitor, lisinopril, significantly attenuated the cardiovascular responses of renin in the NTS of WKY rats……..….…………...36
4.18 Prior administration of AT1R antagonist, losartan, significantly attenuated the cardiovascular responses of renin in the NTS of WKY rats………………....37
4.19 Prior administration of G protein βγ subunit inhibitor, gallein, did not attenuate the cardiovascular responses of renin in the NTS of WKY rats……….38
4.20 Prior administration of PLC inhibitor, U73122, did not attenuate the cardiovascular responses of renin in the NTS of WKY rats…...………………...38
4.21 Prior administration of intracellular Ca2+ chelator, BAPTA-AM, significantly attenuated the cardiovascular responses of renin in the NTS of WKY rats……...39
4.22 The PRR existed in the NTS but may not participate the cardiovascular effects of renin in WKY rats……………………………………………………..39
5. Discussion………………………………………………………………...…......41
6. Conclusion…………………………………………………………....…………47
7. Future Perspectives…………………………………………………..……......48
8. References……………………………………………………………………....49
9. Figures and Figure Legends………………………………………………….60
F.1 Representative diagram of the set up for the stereotaxic microinjection studies on the rat brain stem nuclei……………………..……………...….……………..60

F.2 Cardiovascular effects of unilateral microinjection of renin into the NTS in the anesthetized WKY rats………………………..……………………….…..…….61

F.3 The cardiovascular effects of renin in the NTS after administration of the NOS inhibitor, L-NAME………………………………….…………….......…………63

F.4 Effects of renin on NO3- levels on the NTS of WKY rats…………..…..…...65

F.5 The cardiovascular effects of renin the NTS after administration of the eNOS inhibitor, L-NIO………………………………………….…………….………...66

F.6 Effects of renin on eNOS phosphorylation……………………...…………...68

F.7 Immunohistochemical detection of renin-dependent activation of eNOS phosphorylation in the NTS of WKY rats…………………………..……….…...70

F.8 The cardiovascular effects of renin the NTS after administration of the selective nNOS inhibitor, Vinyl-L-NIO……………………………..….………..72

F.9 Effects of renin on nNOS phosphorylation……………………..……….…...74

F.10 Effects of renin on iNOS protein expression……………………….…..…..76

F.11 The cardiovascular effects of renin the NTS after administration of the Akt inhibitor IV…………………………………….……………………………..…..78

F.12 Effects of renin on Akt phosphorylation…………………………...……….80

F.13 The cardiovascular effects of renin the NTS after administration of the PI3K inhibitor, LY294002……………………………………….………………….….82

F.14 Effects of LY294002 on renin stimulated eNOS phosphorylation………....84

F.15 The effect of PI3K inhibitor LY294002 on renin stimulated eNOS phosphorylation in the NTS of WKY rats………………………..………..……..86

F.16 Effects of LY294002 on renin stimulated Akt phosphorylation……….…...88

F.17 The cardiovascular effects of renin the NTS after administration of the MAPK inhibitor, PD98059………………………………………………..……..90

F.18 Effects of renin on ERK1/2 phosphorylation…………………………….....92

F.19 The cardiovascular effects of renin the NTS after administration of the calmodulin inhibitor, W-7……………………………………....…..……………94

F.20 The cardiovascular effects of renin the NTS after orally administration of the specific renin inhibitor, aliskiren…………………………………..….…………96

F.21 The cardiovascular effects of renin the NTS after administration of the ACE inhibitor, lisinopril…………………………………….……………..…………..98

F.22 The cardiovascular effects of renin the NTS after administration of the AT1R antagonist, losartan……………………………………….………………….…100

F.23 The cardiovascular effects of renin the NTS after administration of the G protein βγ subunit inhibitor, gallein………………….………………….….…..102

F.24 The cardiovascular effects of renin the NTS after administration of the PLC inhibitor, U73122…………………………………….………………………....104

F.25 The cardiovascular effects of renin the NTS after administration of the intracellular Ca2+ chelator, BAPTA-AM………………………………..………106

F.26 The expression of PRR in the NTS of WKY rats………………….….…..108

F.27 The cardiovascular effects of renin the NTS after administration of the PRR blocker, HRP………………………….………………………………..……….109

F.28 Proposed renin signaling pathway in the regulation of blood pressure and heart rate in the NTS……………………………………………….…………...111

10. Appendix………………………………………………………………….…..112
參考文獻 References
Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7, 261-269.

Ando H, Zhou J, Macova M, Imboden H, Saavedra JM. (2004). Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke 35, 1726-1731.

Averill DB and Diz DI. (2000). Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51, 119-128.

Bader M, Peters J, Baltatu O, Müller DN, Luft FC, Ganten D. (2001). Tissue renin–angiotensin systems: new insights from experimental animal models in hypertension research. J Mol Med 79, 76-102.

Bader M and Ganten D. (2002). It's renin in the brain: transgenic animals elucidate the brain renin–angiotensin system. Circ Res 90, 8-10.

Boscan P, Allen AM, Paton JF. (2001). Baroreflex inhibition of cardiac sympathetic outflow is attenuated by angiotensin II in the nucleus of the solitary tract. Neuroscience 103, 153-160.

Burckl′e CA, Danser AHJ, M‥uller DN, Garrelds IM, Gasc JM, Popova E, Plehm R, Peters J, Bader M, Nguyen G. (2006). Elevated blood pressure and heart rate in human renin receptor transgenic rats. Hypertension 47, 552-556.

Bredt DS and Snyder SH. (1990). Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A 87, 682-685.

Cale JM and Bird IM. (2006). Inhibition of MEK/ERK1/2 signalling alters endothelial nitric oxide synthase activity in an agonist-dependent manner. Biochem J 398, 279-288.

Cheng WH, Lu PJ, Ho WY, Tung CS, Cheng PW, Hsiao M, Tseng CJ. (2010). Angiotensin II inhibits neuronal nitric oxide synthase activation through the ERK1/2-RSK signaling pathway to modulate central control of blood pressure. Circ Res 106, 788-95

Contrepas A, Walker J, Koulakoff A, Franek KJ, Qadri F, Giaume C, Corvol P, Schwartz CE, Nguyen G. (2009). A role of the (pro)renin receptor in neuronal cell differentiation. Am J Physiol Regul Integr Comp Physiol 297, 250-257.

Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. (2007). Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens 21, 20-27.

Danser AHJ and Denium J. (2005). Renin, prorenin and putative (pro)renin receptor. Hypertension 46, 1069-1076.

Danser AHJ, Derkx FHM, Schalekamp MADH, Hense HW, Riegger GAJ, Schunkert H. (1998). Determinants of interindividual variation of renin and prorenin concentrations: evidence for a sexual dimorphism of (pro)renin levels in humans. J Hypertens 16, 853-862.

Davisson RL, Oliverio MI, Coffman TM, Sigmund CD. (2000). Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest 106, 103-106.

De Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. (2000) International Union of Pharmacology. XXIII. The Angiotensin II Receptors. Pharmacol Rev 52, 415-472.

Diz DI, Jessup JA, Westwood BM, Bosch SM, Vinsant S, Gallagher PE, Averill DB. (2002). Angiotensin peptides as neurotransmitters/neuromodulators in the dorsomedial medulla. Clin Exp Pharmacol Physiol 29, 473-482.

Farnsworth CL, Freshney NW, Rosen LB, Ghosh A, Greenberg ME, Feig LA. (1995). Calcium activation of Ras mediated by neuronal exchange factor Ras-GRF. Nature 376, 524-527.

Fischer-Ferraro C, Nahmod VE, Goldstein DJ, Finkielman S. (1971). Angiotensin and renin in rat and dog brain. J Exp Med 133, 353-361.
Gupta S, Ramjaun AR, Haiko P, Wang Y, Warne PH, Nicke B, Nye E, Stamp G, Alitalo K, Downward J. (2007). Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell 129, 957-968.

Guyenet PG. (2006). The sympathetic control of blood pressure. Nat Rev Neurosci 7, 335-346.

Guyton AC, Cowley AW, Coleman TG, DeClue JW, Norman RA, Manning RD. (1974). Hypertension: a disease of abnormal circulatory control. Chest 65, 328-338.

Hirasawa K, Sato Y, Hosoda Y, Yamamoto T, Hanai H. (2002). Immunohistochemical localization of angiotensin II receptor and local renin-angiotensin system in human colonic mucosa. J Histochem Cytochem 50, 275-282.

Hirooka Y, Sakai K, Kishi T, Ito K, Shimokawa H, Takeshita A. (2003). Enhanced depressor response to endothelial nitric oxide synthase gene transfer into the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res 26, 325-331.

Hsiao M, Lu PJ, Huang HN, Lo WC, Ho WY, Lai TC, Chiang HT, Tseng CJ. (2008). Defective phosphatidylinositol 3-kinase signaling in central control of cardiovascular effects in the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res 31, 1209-18.

Ho WY, Lu PJ, Hsiao M, Hwang HR, Tseng YC, Yen MH, Tseng CJ. (2008). Adenosine modulates cardiovascular functions through activation of extracellular signal-regulated kinases 1 and 2 and endothelial nitric oxide synthase in the nucleus tractus solitarii of rats. Circulation 117, 773-80.

Huang HN, Lu PJ, Lo WC, Lin CH, Hsiao M, Tseng CJ. (2004). In situ Akt phosphorylation in the nucleus tractus solitarii is involved in central control of blood pressure and heart rate. Circulation 110, 2476-248.

Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W. (2006). Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 69, 105-113.

Ichihara A, Hayashi M, Kaneshiro Y, Suzuki F, Nakagawa T, Tada Y, Koura Y, Nishiyama A, Okada H, Uddin MN, Nabi AH, Ishida Y, Inagami T, Saruta T. (2004). Inhibition of diabetic nephropathy by a decoy peptide corresponding to the “handle” region for nonproteolytic activation of prorenin. J Clin Invest 114, 1128-1135.

Ichihara A, Suzuki F, Nakagawa T, Kaneshiro Y, Takemitsu T, Sakoda M, Nabi AH, Nishiyama A, Sugaya T, Hayashi M, Inagami T. (2006). Pro-renin receptor blockade inhibits development of glomerulosclerosis in diabetic angiotensin II type 1a receptor-deficient mice. J Am Soc Nephrol 17, 1950-1961.

Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. (1987a). Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84, 9265-9269.

Ignarro LJ, Byrns RE, Buga GM, Wood KS. (1987b). Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61, 866-879.

Ito S, Komatsu K, Tsukamoto K, Kanmatsuse K, Sved AF. (2002). Ventrolateral medulla AT1 receptors support blood pressure in hypertensive rats. Hypertension 40, 552-559.

Ito S, Hiratsuka M, Komatsu K, Tsukamoto K, Kanmatsuse K, Sved AF. (2003). Ventrolateral medulla AT1 receptors support arterial pressure in Dahl salt-sensitive rats. Hypertension 41, 744-750.

Jones A and Wood DR. (2003). Skeletal muscle RAS and exercise performance. Int J Biochem Cell Biol 35, 855-866.

Kopp UC and Buckley-Bleiler RL. (1989). Impaired renorenal reflexes in two-kidney, one clip hypertensive rats. Hypertension 14, 445-452.

Lavoie JL, Cassell MD, Gross KW, Sigmund CD. (2004a). Adjacent expression of renin and angiotensinogen in the rostral ventrolateral medulla using a dual reporter transgenic model. Hypertension 43, 1116-1119.

Lavoie JL, Cassell MD, Gross KW, Sigmund CD. (2004b). Localization of renin expressing cells in the brain, by use of a REN-eGFP transgenic model. Physiol Genomics 16, 240-246.

Lavoie JL, Liu X, Bianco RA, Beltz TG, Johnson AK, Sigmund CD. (2006). Evidence supporting a functional role for intracellular renin in the brain. Hypertension 47, 461-466.

Lenkei Z, Corvol P, Llorens-Cortes C. (1995). The angiotensin receptor subtype AT1A predominates in rat forebrain areas involved in blood pressure, body fluid homeostasis and neuroendocrine control. Brain Res Mol Brain Res 30, 53-60.

Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C. (1997). Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol 18, 383-439.

Leslie RA. (1985). Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema and dorsal motor nucleus of the vagus. Neurochem Int 7, 191-212.

Lin LH, Taktakishvili O, Talman WT. (2007). Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. . Brain Res 1171, 1142-1151.

Lippoldt A, Fuxe K, Luft FC. (2001). A view of renin in the brain. J Mol Med 79, 71-73.

Lo WC, Lin HC, Ger LP, Tung CS, Tseng CJ. (1997). Cardiovascular effects of nitric oxide and N-methyl-D-aspartate receptors in the nucleus tractus solitarii of rats. Hypertension 30, 1499-1503

Lo WC, Jan CR, Chiang HT, Tseng CJ. (2000). Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats. Hypertension 35, 1253-1257.

Lo WC, Liu HW, Lin HC, Ger LP, Tung CS, Tseng CJ. (1996). Modulatory effects of nitric oxide on baroreflex activation in the brainstem nuclei of rats. Chin J Physiol 39, 57-62.

Luetscher JA, Kraemer FB, Wilson DM, Schwartz HC, Bryer AM. (1985). Increased plasma inactive renin in diabetes mellitus a marker of microvascular complications. N Engl J Med 312, 1412-1417.

Luo Z, Fujio Y, Kureishi Y, Rudic RD, Daumerie G, Fulton D, Sessa WC, Walsh K. (2000). Acute modulation of endothelial Akt/PKB activity alters nitric oxide–dependent vasomotor activity in vivo. J Clin Invest 106, 493-499.

Macrez N, Mironneau C, Carricaburu V, Quignard JF, Babich A, Czupalla C, Nürnberg B, Mironneau J. (2001). Phosphoinositide 3-kinase isoforms selectively couple receptors to vascular L-type Ca2+ channels. Circ Res 89, 692-699.

McKinley MJ, Allen AM, Mathai ML, May C, McAllen RM, Oldfield BJ, Weisinger RS. (2001). Brain angiotensin and body fluid homeostasis. Jpn J Physiol 51, 281-289.

Menetrey D and Basbaum AI. (1987). Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol 255, 439-450.

Methot D, Silversides DW, Reudelhuber TL. (1999). In vivo enzymatic assay reveals catalytic activity of the human renin precursor in tissues. Circ Res 84, 1067–1072.

Morimoto S, Cassell MD, Sigmund CD. (2002). Glial- and neuronal-specific expression of the renin-angiotensin system in brain alters blood pressure, water intake, and salt preference. J Biol Chem 277, 33235-33241.

Morsing P. (1999). Candesartan: a new-generation angiotensin II AT1 receptor blocker: pharmacology, antihypertensive efficacy, renal function, and renoprotection. J Am Soc Nephrol 10 Suppl 11, S248-254.

Mosqueda-Garcia R, Tseng CJ, Appalsamy M, Robertson D. (1990). Cardiovascular effects of microinjection of angiotensin II in the brainstem of renal hypertensive rats. J Pharmacol Exp Ther 255, 374-381.

Nabi AH, Kageshima A, Uddin MN, Nakagawa T, Park EY, Suzuki F. (2006). Binding properties of rat prorenin and renin to the recombinant rat renin/prorenin receptor prepared by a baculovirus expression system. Int J Mol Med 18, 483- 488.

Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD. (2002). Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109, 1417-1427.

Nguyen G. (2006). Renin/prorenin receptors. Kidney Int 69, 1503-1506.

Nishimura Y, Ito T, Hoe K, Saavedra JM. (2000). Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors. Brain Res 871, 29-38.

Ogihara T, Asano T, Ando K, Chiba Y, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Katagiri H, Fukushima Y, Kikuchi M, Noguchi N, Aburatani H, Komuro I, Fujita T. (2002). Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension 40, 872-879.

Oliver JA. (2006). Receptor mediated actions of renin and prorenin. Kidney Int 69, 13-15.

Paton JF, Deuchars J, Ahmad Z, Wong LF, Murphy D, Kasparov S. (2001). Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol 531, 445-458.

Peng JF and Phillips MI. (2001). Opposite regulation of brain angiotensin II type 1and type 2 receptor in cold-induced hypertension. Regul Pept 97, 91-102.

Peters B, Grisk O, Becher B, Wanka H, Kuttler B, Ludemann J, Lorenz G, Rettig R, Mullins JJ, Peters J. (2008). Dose-dependent titration of prorenin and blood pressure in Cyp1a1ren-2 transgenic rats: absence of prorenin-induced glomerulosclerosis. J Hypertens 26, 102-109.

Prescott G, Silversides DW, Reudelhuber TL. (2002). Tissue activity of circulating prorenin. Am J Hypertens 15, 280-285.

Price DA, Porter LE, Gordon M, Fisher ND, De'Oliveira JM, Laffel LM, Passan DR, Williams GH, Hollenberg NK. (1999). The paradox of the low-renin state in diabetic nephropathy. J Am Soc Nephrol 10, 2382-2391.

Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S. (1990). Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101, 746-752.

Reis DJ. (1984). The brain and hypertension: reflections on 35 years of inquiry into the neurobiology of the circulation. Circulation 70, III 31-45.

Reudelhuber TL, Ramla D, Chiu L, Mercure C, Seidah NG. (1994). Proteolytic processing of human prorenin in renal and nonrenal tissues. Kidney Int 46, 1522- 1524.

Saavedra JM. (1992). Brain and pituitary angiotensin. Endocr Rev 13, 329-380.

Sakai K, Hirooka Y, Matsuo I, Eshima K, Shigematsu H, Shimokawa H, and Takeshita A. (2000). Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension 36, 1023-1028.

Sato A and Schmidt RF. (1973). Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev 53, 916-947.

Satofuka S, Ichihara A, Nagai N, Koto T, Shinoda H, Noda K, Ozawa Y, Inoue M, Tsubota K, Itoh H, Oike Y, Ishida S. (2007). Role of nonproteolytically activated prorenin in pathologic, but not physiologic, retinal neovascularization. Invest Ophthalmol Vis Sci 48, 422-429.

Shan Z, Cuadra AE, Sumners C, Raizada MK. (2008). Characterization of a functional (pro)renin receptor in rat brain neurons. Exp Physiol 93, 701-708

Spyer KM, Mifflin SW, Withington-Wray DJ. (1987). Organization of the autonomic nervous system: control and peripheral mechanisms. (New York, Alan R. Lisps)

Spyer KM. (1990). Central regulation. (New York: Oxford Univ Press).

Suire S, Condliffe AM, Ferguson GJ, Ellson CD, Guillou H, Davidson K, Welch H, Coadwell J, Turner M, Chilvers ER, Hawkins PT, Stephens L. (2006). Gbetagammas and the Ras binding domain of p110gamma are both important regulators of PI(3)Kgamma signalling in neutrophils. Nat Cell Biol 8, 1303-1309.

Tagawa T, Horiuchi J, Potts PD, Dampney RA. (1999). Sympathoinhibition after angiotensin receptor blockade in the rostral ventrolateral medulla is independent of glutamate and gamma-aminobutyric acid receptors. J Auton Nerv Syst 77, 21-30.

Tai MH, Hsiao M, Chan JY, Lo WC, Wang FS, Liu GS, Howng SL, Tseng CJ. (2004). Gene delivery of endothelial nitric oxide synthase into nucleus tractus solitarii induces biphasic response in cardiovascular functions of hypertensive rats. Am J Hypertens 17, 63-70.

Tseng CJ, Biaggioni I, Appalsamy M, Robertson D. (1988). Purinergic receptors in the brainstem mediate hypotension and bradycardia. Hypertension 11, 191-197.

Tseng CJ, Mosqueda GR, Appalsamy M, Robertson D. (1989). Cardiovascular effects of neuropeptide Y in rat brainstem nuclei. Circ Res 64, 55-61.

Tseng CJ, Appalsamy M, Robertson D, Mosqueda GR. (1993). Effects of nicotine on brain stem mechanisms of cardiovascular control. J Pharmacol Exp Ther 265, 1511-1518.

Tseng CJ, Chou LL, Ger LP, Tung CS. (1994). Cardiovascular effects of angiotensin III in brainstem nuclei of normotensive and hypertensive rats. J Pharmacol Exp Ther 268, 558-564.

Tseng CJ, Liu HY, Lin HC, Ger LP, Tung CS, Yen MH. (1996). Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension 27, 36-42.

Ushio-Fukai M, Griendling KK, Akers M, Lyons PR, Alexander RW. (1998). Temporal dispersion of activation of phospholipase C-beta1 and -gamma isoformsby angiotensin II in vascular smooth muscle cells. Role of alphaq/11, alpha12, andbeta gamma G protein subunits. J Biol Chem 273, 19772-19777.

Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK. (1999). Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274, 22699-22704.

Van Kats JP, Danser AHJ, van Meegen JR, Sassen LM, Verdouw PD, Schalekamp MADH. (1998). Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation 98, 73-81.

Van Kats JP, Schalekamp MADH, Verdouw PD, Duncker DJ, Danser AHJ. (2001). Intrarenal angiotensin II: interstitial and cellular levels and site of production. Kidney Int 60, 2311-2317.

V′eniant M, M′enard J, Bruneval P, Morley S, Gonzales MF, Mullins JJ. (1996). Vascular damage without hypertension in transgenic rats expressing prorenin exclusively in the liver. J Clin Invest 98, 1966-1970.

Viard P, Butcher AJ, Halet G, Davies A, Nürnberg B, Heblich F, Dolphin AC. (2004). PI3K promotes voltage-dependent calcium channel trafficking to the plasma membrane. Nat Neurosci 7, 939-946.

Vincent SR and Kimura H. (1992). Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46, 755-784.

Waki H, Kasparov S, Wong LF, Murphy D, Shimizu T, Paton JF. (2003). Chronic inhibition of endothelial nitric oxide synthase activity in nucleus tractus solitarii enhances baroreceptor reflex in conscious rats. J Phsiol 546, 233-242.

Waki H, Kasparov S, Wong LF, Murphy D, Shimizu T, Paton JF. (2006). Endothelial NO synthase activity in nucleus tractus solitarii contributes to hypertension in spontaneously hypertensive rats. Hypertension 48, 644-650.

Wang W, Brandle M, Zucker IH. (1993). Acute alcohol administration stimulates baroreceptor discharge in the dog. Hypertension 21, 687-694.

Wang G, Anrather J, Huang J, Speth RC, Pickel VM, Iadecola C. (2004). NADPH Oxidase Contributes to Angiotensin II Signaling in the Nucleus Tractus Solitarius. J Neurosci 24, 5516-5524.

Wong LF, Polson JW, Murphy D, Paton JF, Kasparov S. (2002). Genetic and pharmacological dissection of pathways involved in the angiotensin II-mediated depression of baroreflex function. FASEB J 16, 1595-1601.

Yang G, Wan Y, Zhu Y. (1996). Angiotensin II- an important stress hormone. Biol Signals 5, 1-8.

Yang SJ and Hwang JC. (2007). Ca2+ influx is essential for the hypotensive response to arginine vasopressin-induced neuron activation of the area postrema in the rat. Brain Res 1163, 56-71.

Zarahn ED, Ye X, Ades AM, Reagan LP, Fluharty SJ. (1992). Angiotensin-induced cyclic GMP production is mediated by multiple receptor subtypes and nitric oxide in N1E-115 neuroblastoma cells. J Neurochem 58, 1960-1963.

Zeng G and Quon MJ. (1996). Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 98, 894-898.

Zhu M, Neubig RR, Wade SM, Posner P, Gelband CH, Sumners C. (1997). Modulation of K+ and Ca2+ currents in cultured neurons by an angiotensin II type 1a receptor peptide. Am J Physiol 273, C1040-1048.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.168.16
論文開放下載的時間是 校外不公開

Your IP address is 18.218.168.16
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code