Responsive image
博碩士論文 etd-0908108-175223 詳細資訊
Title page for etd-0908108-175223
論文名稱
Title
利用雜訊抵銷技術之低雜訊放大器設計與分析
Design and Analysis of Low Noise Amplifier Exploiting Noise Cancellation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-25
繳交日期
Date of Submission
2008-09-08
關鍵字
Keywords
雜訊分析、雜訊抵銷、低雜訊放大器
Noise Analysis, Low Noise Amplifier, Noise Cancellation
統計
Statistics
本論文已被瀏覽 5800 次,被下載 5414
The thesis/dissertation has been browsed 5800 times, has been downloaded 5414 times.
中文摘要
本論文主要分為三部份,第一部分主要是探討電晶體中之各種不同雜訊來源與其雜訊等效模型,並針對目前文獻上熱門之雜訊抵銷電路架構進行分析,並詳細推導雜訊抵銷低雜訊放大器電路架構之理論。第二部份則是實際以共閘極雜訊抵銷電路架構進行雜訊抵銷之實驗,藉由調整電晶體之轉導值,探討在不同雜訊抵銷條件下,其雜訊指數之模擬與量測結果比較。第三部份則是採用共源極電阻回授之雜訊抵銷架構,利用TSMC 0.18μm RF CMOS製程設計一個應用於DVB-H系統並成功具有雜訊抵銷功能之寬頻低雜訊放大器RFIC。
Abstract
This thesis is composed of three parts. The first part is devoted to introducing the various noise sources in transistors and their equivalent noise models. Based on the equivalent noise models, the theory of noise cancellation in a low-noise amplifier is derived in detail. The second part is to perform an experiment to validate the theory of low-noise amplifier using common-gate noise cancellation technique. By adjusting the transconductance of individual transistor, the simulated and measured noise figures are compared under different noise cancellation conditions. The third part is to design a low-noise amplifier RFIC using common-source noise cancellation technique for DVB-H applications. This RFIC was implemented in a TSMC 0.18μm process and measured to show successful noise cancellation capability in a wide frequency range.
目次 Table of Contents
目錄 I
圖目錄 III
表目錄 VI
第一章 緒論 1
1.1 雜訊簡介 1
1.2 低雜訊放大器 3
1.2.1 雜訊匹配設計 4
1.2.2電感性源極退化設計 4
1.2.3 雜訊抵銷設計 5
1.2.4 電容交互耦合設計 6
1.3 研究動機 7
1.4 章節介紹 7
第二章 低雜訊放大器之雜訊抵銷設計方法 8
2.1 場效電晶體之雜訊模型 8
2.2 雜訊抵銷電路架構 16
2.2.1 共源極電阻回授之雜訊抵銷架構 16
2.2.2 共閘極之雜訊抵銷架構 20
2.2.3共源極與共汲極電阻回授之雜訊抵銷架構 23
2.3 共閘極雜訊抵銷電路之設計原理 24
第三章 低雜訊放大器之雜訊抵銷模擬與實驗 28
3.1 實驗架構 28
3.2 模擬流程 29
3.3 模擬與量測結果比較 32
第四章 雜訊抵銷低雜訊放大器之CMOS RFIC設計 41
4.1 電路設計 41
4.2 模擬與量測結果比較 43
4.3 規格比較 50
第五章 結論 51
參考文獻 52
參考文獻 References
[1] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[2] S. A. Mass, Noise in Linear and Nonlinear Circuits, Artech House, 2005.
[3] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Cirsuits, 2nd ed., Cambridge University Press, 2004.
[4] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed., Prentice Hall, 1997.
[5] D. M. Pozar, Microwave Engineering, 2nd ed., Wiley, 1998.
[6] D. K. Shaeffer, and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997.
[7] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, Dec. 2004.
[8] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 275-282, Feb. 2004.
[9] C. F. Liao and S. I. Liu, “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers,” IEEE J. Solid-State Circuits, vol.42, no. 2, pp. 329-339, Feb. 2007.
[10] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “A wideband noise-canceling CMOS LNA exploiting a transformer,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., 2006, pp. 11-13.
[11] S. Chehrazi, A. Mirzaei, R. Bagheri, and A. A. Abidi, “A 6.5 GHz wideband CMOS low noise amplifier for multi-band use,” in Proc. IEEE Custom Integrated Circuits Conf., 2005, pp. 801-804.
[12] J. Jussila and P. Sivonen, “A 1.2-V highly linear balanced noise-cancelling LNA in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 579-587, March 2008.
[13] S. C. Blaakmeer, E. A. M. Klumperink, D. M. W. Leenaerts, and B. Nauta, “Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1341-1350, June 2008.
[14] W. H. Chen, G. Liu, B. Zdravko, and A. M. Niknejad, “A highly linear broadband CMOS LNA employing noise and distortion cancellation,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1164-1176, May 2008.
[15] D. G. Im, S. S. Song, H. T. Kim, and K. Lee, “A wide-band CMOS variable-gain low noise amplifier for multi-standard terrestrial and cable TV tuner,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., 2007, pp. 621-624.
[16] R. Ramzan, S. Andersson, J. Dabrowski, and C. Svensson, “A 1.4V 25mW inductorless wideband LNA in 0.13μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., 2007, pp. 424-613.
[17] W. Zhuo, S. Embabi, J. Gyvez, and E. Sanchez-Sinencio, “Using capacitive cross-coupling technique in RF low-noise amplifiers and down-conversion mixer design,” in Proc. Eur. Solid-State Circuits Conf., 2000, pp. 116–119.
[18] W. Zhuo, X. Li, S. Shekhar, S. H. K. Embabi, J. P. de Gyvez, D. J. Allstot, and E. Sanchez-Sinencio, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 52, no. 12, pp. 875-879, Dec. 2005.
[19] X. Fan, H. Zhang, and E. Sanchez-Sinencio, “A noise reduction and linearity improvement technique for a differential cascode LNA,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588-599, March 2008.
[20] J. J. Berenz, K. Nakano, and K. P. Weller, “Low noise high electron mobility transistors,” in IEEE MTT-S Int. Microwave Symp. Dig., 1984, pp. 98-101.
[21] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed. McGraw-Hill, 1999.
[22] B. Wang, J. R. Hellums, and C. G. Sodini, “MOSFET thermal noise modeling for analog integrated circuits,” IEEE J. Solid-State Circuits, vol. 29, no. 7, pp. 833-835, July 1994.
[23] A. J. Scholten, L. F. Tiemeijer, R. Van Langevelde, R. J. Havens, A. T. A. Zegers-van Duijnhoven, and V. C. Venezia, “Noise modeling for RF CMOS circuit simulation,” IEEE Trans. Electron Devices, vol. 50, no. 3, pp. 618-632, Mar. 2003.
[24] M. J. Deen, C. H. Chen, and Y. Cheng, “MOSFET modeling for low noise, RF circuit design,” in Proc. IEEE Custom Integrated Circuits Conf., 2002, pp. 201–208.
[25] A. A. Abidi, “High-frequency noise measurements on FET’s with small dimensions,” IEEE Trans. Electron Devices, vol. ED-33, pp. 1801-1805, Nov. 1986.
[26] A. van der Ziel, “Thermal noise in field-effect transistors,” Proc. IRE , vol.50, no. 8, pp. 1808-1812, Aug. 1962.
[27] A. Cappy, “Noise modeling and measurement techniques [HEMTs],” IEEE Trans. Microwave Theory Tech., vol. 36, no. 1, pp. 1-10, Jan 1988.
[28] D. Delagebeaudeuf, I. Chevrier, M. Laviron, and P. Delescluse, “A new relationship between the Fukui coefficient and optimal current value for low noise operation of field effect transistors,” IEEE Electron Device Lett., vol. EDL-6, no. 9, pp. 444-445, 1985.
[29] A. van der Ziel, “Gate noise in field effect transistors at moderately high frequencies,” Proc. IRE, vol. 51 pp. 461-467, 1963.
[30] “Agilent ATF-55143 low noise enhancement mode pseudomorphic HEMT in a surface mount plastic package,” Data Sheet, Agilent Technologies, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code