Responsive image
博碩士論文 etd-0910107-202540 詳細資訊
Title page for etd-0910107-202540
論文名稱
Title
紫外光/臭氧處理含氟、氮、硫氧等有機物之 氧化特性研究
Oxidation characteristics of fluorine-, nitrogen-, and sulfur-containing organic compounds by UV/O3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
178
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-05-29
繳交日期
Date of Submission
2007-09-10
關鍵字
Keywords
二甲基亞砜、氟化醇、六甲基乙矽銨、臭氧化、紫外線/臭氧、揮發性有機物、高級氧化程序
advanced oxidation processes (AOPs), dimethyl sulfoxide (DMSO), tetrafluoro propanol (TFP), Volatile organic compounds (VOCs), hexamethyldisilazane (HMDS), photolysis, UV/O3, ozonation
統計
Statistics
本論文已被瀏覽 5758 次,被下載 3091
The thesis/dissertation has been browsed 5758 times, has been downloaded 3091 times.
中文摘要
DMSO (dimethyl sulfoxide)的沸點高達189 oC並且由於其優異之溶解特性而被廣泛應用於工業界,近年來更大量使用於半導體廠與液晶螢幕製造廠作為光阻剝離液,生物處理被證實不適合用於含DMSO之廢水,因降解過程中會產生毒性與臭味物質。TFP (tetrafluoro propanol)的沸點為110 oC且有高水溶性,由於其具有溶解有機染料之特性,近年來被廣泛運用於CD-R與DVD-R製造廠,相關製程每年排放出大量含TFP廢水,具作者所知,目前並無生物降解TFP之相關文獻。HMDS (hexamethyldisilazane)被廣泛應用於生命科學顯微鏡與材料科學,例如半導體廠即使用HMDS提升光阻材料與氧化物表面之附著力,但HMDS為致癌物質且具有氨臭味。沸石轉輪處理含HMDS廢氣時會產生固體二氧化矽並阻塞孔隙材料,所以並非合適之處理方法,生物處理也因HMDS之低水溶性與低生物降解性導致處理效果不佳。
本研究為探討UV/O3單獨處理液相DMSO、TFP與氣相HMDS的可行性、效益及氧化特性。
液相DMSO與TFP實驗中,使用一壓克力製作之反應器,有效體積為10 L。供試液體分別為內含濃度400-890 mg/L 之DMSO與772-887 mg/L之TFP,臭氧氣體流速控制於3 L/min。觀察不同pH值(酸性、中性、鹼性)、不同液體溫度(26、37、48、60 oC)、與不同UV波長(254 nm 與 185+254 nm)對供試液體中有機物去除率之影響,最後,探討UV/O3處理DMSO與TFP之操作成本。
實驗結果顯示,DMSO在酸性條件(pH =3.6)下有較佳之降解效率,在單位體積UV強度P/V = 2.25 W/L與反應時間120 min之條件下,DMSO去除率可達95%。實驗結果另顯示,TFP則在鹼性條件(pH = 9.5)下有較佳的分解速率,在P/V = 2.5 W/L與反應時間60 min情形下,TFP去除率可達95%。反應期間若有足夠臭氧供給,DMSO與TFP皆呈現零階動力模式。在測試的濃度與溫度下,昇高溫度對UV/O3氧化TFP並無顯著幫助。操作成本分析證實,以UV/O3處理含DMSO或TFP廢水經濟性皆優於文獻中所提及之方法。
另外,在兩組批次反應器(體積為1.2 L與5.8 L)中進行HMDS氧化反應,HMDS可為UV (185+254 nm)與UV(254 nm)/O3程序分解。實驗之HMDS初始濃度設定於32-41 mg/m3,觀察臭氧劑量(O3 (mg)/HMDS (mg) =1-5)、空氣介質(氮氣、氧氣、空氣)、溫度(28、46、65、80 oC)、相對濕度(20、50、65、99%)、UV體積能量輸入(0.87、1.74、4.07、8.16 W/L)對HMDS降解速率之影響。實驗結果顯示,UV (185+254 nm)光解於所有實驗條件下降解效率皆優於UV (254 nm)/O3,且反應呈現一階動力模式。UV (185+254 nm)光解程序於飽和水氣與反應溫度介於46-80 oC時有較佳之降解效果,於該條件下與P/V = 8 W/L時,k值約為0.20 s-1且反應時間只需12秒即可去除90%之HMDS。UV(185+254 nm)於濕空氣中降解HMDS之主要機制為OH自由基氧化,而自由基為光解水分子或O(1D)(產生自光解氧分子)所產生。最後並比較UV (185+254 nm)與UV (254 nm)/O3程序於不同UV能量輸入下之經濟評估因子。
Abstract
DMSO (dimethyl sulfoxide) is a liquid with a high boiling point (189 oC) that has been extensively utilized in various industries owing to its ability to dissolve various organic and inorganic compounds. DMSO is increasingly being adopted as a detergent or a photo-resistant stripping solvent in manufacturing semiconductors and liquid crystal displays (LCD). Therefore, DMSO is now a major component of wastewater. The biological treatment of DMSO-containing wastewater generates noxious DMS (dimethyl sulfide) and other compounds that may cause odor problems. Also having a high water solubility and a moderate boiling point (110 oC), tetrafluoro propanol (TFP) has been extensively applied in the manufacture of CD-R and DVD-R, due to its ability to dissolve organic dyes. The spin coating process produces a large amount of wastewater containing TFP. No reports have been written on the biodegradability of TFP to the authors’ knowledge. Additionally, HMDS (hexamethyldisilazane) has been extensively used in life science microscopy and material science. For instance, the semiconductor industry employs HMDS to promote the adhesion of photo-resistant material to oxide(s). HMDS is classified as a carcinogen, and has an ammonia odor. Condensing incinerators have been found to be unsuitable for treating HMDS-containing waste gases, because of the formation of silicon dioxide, which blocks porous adsorbents. Biological treatment also appears to be unpromising due to its low water solubility and limited biodegradability.
This investigation evaluates the feasibility, effectiveness and oxidation characteristics of aqueous DMSO, TFP and gaseous HMDS (hexamethyldisilazane) by UV/O3 processes. A reactor made entirely of acrylic plastic with an effective volume of 10 L was employed for the reactions. The tested VOCs concentrations were adjusted to 400–890mg/L and 772–887 mg/L for DMSO and TFP, respectively, and the gas (ozone-enriched air) flow rate was controlled at 3L/min. The effects of various solution pH values (acidic, alkaline, uncontrolled), solution temperatures (26 oC, 37 oC, 48 oC and 60 oC), and UV wavelengths (254 nm and 185+254 nm) on the removal of tested VOCs were studied . Additionally, the operation costs of treating DMSO and TFP by UV/O3 were estimated.
Experimental results demonstrate that acidic conditions (pH = 3.6) favored the degradation of DMSO, and that the removal efficiency could reach 95% at a volumetric UV intensity P/V of 2.25 W/L and a reaction time of 120 min. However, alkaline conditions (pH = 9.5) favored the decomposition of TFP, with the removal efficiency reaching 95% at P/V = 2.5 W/L and a reaction time of 60 min. Both DMSO and TFP exhibited zero-order degradation kinetics when sufficient ozone was supplied. Raising the oxidation temperature did not increase the UV/O3 oxidation of TFP in the tested concentration and temperature ranges. Operation costs of the UV/O3 per unit volume of wastewater with DMSO or TFP are comparable to those of the methods described in the literature.
For the gaseous HMDS oxidation, two batch reactors with effective volumes of 1.2 and 5.8 L were used employed with the decomposition occurred under UV (185+254 nm) irradiation and UV (254 nm)/O3 processes. Tests were performed with initial HMDS concentrations of 32–41mg/m3 under various initial ozone dosages (O3 (mg)/HMDS (mg) =1–5), atmospheres (N2, O2, and air), temperatures (28 oC, 46 oC, 65 oC and 80 oC), relative humilities (20%, 50%, 65% and 99%) and volumetric UV power inputs (0.87 W/L, 1.74 W/L, 4.07 W/L and 8.16 W/L) to assess their effects on the HMDS degradation rate.
Results of this study demonstrate that the decomposition rates for the UV (185+254 nm) irradiation exceeded those for the UV (254 nm)/O3 process for all conditions. UV (185+254 nm) decompositions of HMDS displayed apparent first-order kinetics. A process with irradiation of UV (185+254 nm) to HMDS in air saturated with water at temperatures of 46–80 oC favors the HMDS degradation. With the above conditions and a P/V of around 8 W/L, k≈ 0.20 s−1, and over 90% of the initial HMDS was degraded in a time of 12s. The main mechanisms for the HMDS in wet air streams irradiated with UV (185+254 nm) were found to be caused by OH free radical oxidation produced from photolysis of water or O (1D) produced from photolysis of oxygen. Economic evaluation factors of UV (185+254 nm) and UV (254 nm)/O3 processes at various UV power inputs were also estimated.
目次 Table of Contents
中文摘要 I
Abstract III
Contents VI
List of Tables VIII
List of Figures X
Nomenclature XV
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objects of Research 3
1.3 Organization of Dissertation 4
Chapter 2 Literature Survey 5
2.1 UV Photolysis 5
2.2 Ozonation 10
2.2 UV/O3 20
Chapter 3 Oxidation of Aqueous DMSO Using UV, O3 and UV/O3 32
3.1 Introduction 32
3.2 Experimental Setup and Operation 33
3.3 Results and Discussion 38
3.4 Summary 53
Chapter 4 Decomposition of Aqueous TFP by UV, O3 and UV/O3 Processes 54
4.1 Introduction 54
4.2 Experimental Setup and Operation 56
4.3 Results and Discussion 58
4.4 Summary 71
Chapter 5 UV/ozone degradation of gaseous HMDS 72
5.1 Introduction 72
5.2 Experimental Setup and Operation 74
5.3 Results and Discussion 77
5.4 Summary 95
Chapter 6 Conclusion Remarks 96
6.1 Conclusions 96
6.2 Recommendation for Future Work 98
References 99
Appendix I Experimental Data 112
Appendix II Author’s Publication List 157
Appendix III 作者簡歷 159
參考文獻 References
Amat, A. M.; Arques, A.; Miranda, M. A.; Lopez, F., Use of ozone and/or UV in the treatment of effluents from board paper industry, Chemosphere, 2005, 60, 1111-1117.
Balcioglu, I. A.; Getoff, N., Advanced oxidation of 4-chlorobenzaldehyde in water by UV-light, ozonation and combination of both methods, Chemosphere, 1998, 36 (9), 1993-2005.
Beltran, F. J.; Rodriguez, E. M.; Romero, M. T., Kinetics of the ozonation of muconic acid in water, 2006, B138, 534-538.
Beltran, F. J., Ozone reaction kinetics for water and wastewater systems, Lewis Publishers, USA, 2004.
Benitez, F. J.; Acero, J. L.; Real F. J., Degradation of carbofuran by using ozone, UV radiation and advanced oxidation processes, J. Hazard. Mater., 2001, B89, 51-65.
Benitez, F. J.; Jesus, B. H.; Juan, L. A.; Rubio, F. J., Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes, Chemosphere, 2000, 41, 1217-1277.
Benitez, F. J.; Jesus, B. H.; Juan, L. A.; Teresa G., Degradation of protocatechuic acid by two advanced oxidation processes: Ozone/UV radiation and H2O2/UV radiation, Water Res., 1996, 30 (7), 1597-1604.
Bhowmick, M.; Semmens, M. J., Ultraviolet photooxidation for the destruction of VOCs in air, Water Res., 1994, 28 (11), 2407-2415.
Bhowmick, M.; Semmens, M. J., Batch studies on a closed loop air stripping process, Water Res.,2002, 28 (9), 2011-2019.
Bolton, J. R.; Bircher, K. G.; Tumas, W.; Tolman, C. A., Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems, Pure Appl. Chem., 2001, 73 (4), 627-637.
Bolton, J.; Cater, S., Homogeneous Photodegradation of Pollutants in Contaminated Water: An Introduction, in: Aquatic and Surface Photochemistry, Lewis Publishers, 1994.
Buxton, G. V.; Greenstock, C. L., Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution, J. Phys. Chem. Ref. Data, 1998, 17 (2), 513-886.
Chen, C. C., TFP recovery from the TFP wastewater of CD-R manufacturing process, Master Degree Thesis, Yuan Ze University, June 2005, Taiwan.
Chen, F.; Pehkonen, S. O.; Ray, M. B., Kinetics and mechanisms of UV-photodegradation of chlorinated organics in the gas phase, Water Res., 2002, 36, 4203-4214.
Chen, Y. H.; Chang, C. Y.; Huang, S. F.; Chiu, C. Y.; Ji, D.; Shang, N. C.; Yu, T. H.; Chiang, P. C.; Ku, Y.; Chen, J. N., Decomposition of 2-naphthalenesulfonate in aqueous solution by ozonation with UV radiation, Water Res., 2002, 36, 4144-4154.
Chen, Y. H.; Chang, C. Y.; Huang, S. F.; Shang, N. C.; Chiu, C. Y.; Yu, T. H.; Chiang, P. C.; Shie, J. L.; Chiou, C. S., Decomposition of 2-naphthalenesulfonate in electroplating solution by ozonation with UV radiation, J. Hazard. Mater., 2005, B118, 177-183.
Cheremisinoff, P. N., Industrial odour control, Butterworth-Heinemann Ltd., Great Britain, 1992.
Chin, A.; Berube, P. R., Removal of disinfection by-product precursors with ozone-UV advanced oxidation process, Water Res., 2005, 39, 2136-2144.
Choi, J. K.; Kim, D. H.; Lee, J.; Yoo, J. B., Effects of process parameters on the growth of thick SiO2 using plasma enhanced chemical vapor deposition with hexamethyldisilazane, Surf. Coat. Technol., 2000, 131, 136-140.
Chou, M. S.; Huang, B. J.; Chang, H. Y., Decomposition of gas phase 1,3-butadiene by ultraviolet/ozone process, J. Air Waste Manage. Assoc., 2005, 55, 919-929.
Chou, M. S.; Huang, B. J.; Chang, H. Y., Degradation of gas-phase glycol monomethyl ether acetate by ultraviolet/ozone process: a kinetic study, J. Air Waste Manage. Assoc., 2006, 56, 767-776.
Cocero, M. J.; Martinez, J. L., Cool wall reactor for supercritical water oxidation modeling and operation results, J. Supercrit. Fluids, 2004, 31, 41-55.
Diaz, R.; Menendez, D.; Tabares, F., High frequency ozone generation system, Ozone Sci. Eng., 2001, 23, 171-176.
Dombi, A.; Ilisz, I.; Laszlo, Z.; Wittmann, G., Comparison of ozone-based and other (VUV and TiO2/UV) radical generation methods in phenol decomposition, Ozone Sci. Eng., 2001, 24, 49-54.
El-Din, M. G.; Smith, D. W.; Momani, F. A.; Weixing, W., Oxidaiton of resin and fatty acids by ozone: kinetics and toxicity study, Water Res., 2006, 40, 392-400.
Esplugas, S.; Gimenez, J.; Contreras, S.; Pascual, E.; Rodriguez M., Comparison of different advanced oxidation processes for phenol degradation, Water Res., 2002, 36, 1034-1042.
Feitz, A. J.; Guan, J.; Chattopadhyay, G.; Waite, T. D., Photo-Fenton degradation of dichloromethane for gas phase treatment, Chemosphere, 2002, 48, 401-406.
Gilbert, E., Influence of ozone on the photocatalytic oxidation of organic compounds, Ozone Sci. Eng., 2002, 24, 75-82.
Gottschalk, C.; Libra, J. A.; Saupe, A., Ozonation of water and waste water, WILEY-VCH, Federal Republic, Germany, 2000.
Graham, J. L.; Striebich, R.; Patterson, C. L.; Krishnan, E. R.; Haught, R. C., MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation, Chemosphere, 2004, 54, 1011-1016.
Graham, N.; Chu, W.; Lau, C., Observations of 2, 4, 6- trichlorophenol degradation by ozone, Chemosphere, 2003, 51, 237-243.
Gun’ko, V. M.; Vedamuthu, M. S.; Henderson, G. L.; Blitz, J. P., Mechanism and kinetics of hexamethyldisilazane reaction with a fumed silica surface, J. Colloid Interface Sci., 2000, 228, 157-170.
Haag, W. R.; Johnson, M. D., Direct photolysis of trichloroethene in air: effect of cocontaminants, toxicity of products, and hydrothermal treatment of products, Environ. Sci. Technol., 1996, 30, 414-421.
Halmann, M. M., Photodegradation of water pollutants, CRC Press, Inc., USA, 1996.
Helgerson, L. W., CD-ROM: Facilitating electronic publishing, Van Nostrand Reinhold, New York, USA, 1992.
Henk, M. J.; van der Maarel, M. J. E. C.; Hans van, G., Dimethylsulfxide reduction by marine sulfate-reducing bacteria, FEMS Microbiol. Lett., 1996, 136, 283-287.
Huang, G. H., Pervaporation on the dehydration of tetrafluoropropanol (TFP) solvent, Chemical Monthly (Taiwan), 2003, 12 (6), 54-65.
Hunter, P.; Oyama, S. T., Control of volatile organic compound emissions, John Wiley & Sons, Inc., New York, USA, 2000.
Idil, A.; Dogruel, S., Pre-treatment of penicillin formulation effluent by advanced oxidation processes, J. Hazard. Mater., 2004, B112, 105-113.
Ikematsu, T.; Hayashi, N.; Ihara, S., Advanced oxidation processes (AOPs) assisted by excimer lamp, Vacuum, 2004, 73, 579-582.
Irmak, S.; Erbatur, O.; Akgerman, A., Degradation of 17β-estradiol and bisphenol A in aqueous medium by using ozone and ozone/UV techniques, J. Hazard. Mater., 2005, B126, 54-62.
Jan, Y. F., Treatment of wastewater and waste solvent from CD-R and DVD-R manufacturing process, Master Degree Thesis, Yuan Ze University, July 2004, Taiwan.
Jeong, J.; Sekiguchi, K.; Lee, W.; Sakamoto, K., Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources, Chemosphere, 2004, 57, 663-671.
Jeong, J.; Sekiguchi, K.; Lee, W.; Sakamoto, K., Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozone-producing UV lamp: decomposition characteristics, identification of by-products and water-soluble organic intermediates, J. Photochem. Photobiol., A, 2005, 169, 279-287.
Joe, D.; Samuel, V.; Roger, R.; John, G., UT Dallas IC fabrication laboratory HMDS process setup 2-21-03, Erik Jonsson school of engineering and computer science, 2003.
Kim, S. B.; Hong, S. C., Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, Appl. Catal., B, 2002, 35, 305-315.
Koito, T.; Tekawa, M.; Toyoda, A., A novel treatment technique for DMSO wastewater, IEEE transactions on semiconductor manufacturing, 1998, 11 (1), 3-8.
Kuniki, K.; Takako, M. N.; Masashi, O.; Seiji, I.; Kohtaro, K., Isolation of dimethyl sulfone-degrading microorganisms and application to odorless degradation of dimethyl sulfoxide, J. of Bioscience and Bioengineering, 2004, 97 (1), 82-84.
Ku, Y.; Chang, J. L.; Shen, Y. S.; Lin, S. Y., Decomposition of diazinon in aqueous solution by ozonation, 1998, 32 (6), 1957-1963.
Ku, Y.; Lin, H. S., Decomposition of phorate in aqueous solution by photolytic ozonation, Water Res., 2002, 36, 4155-4159.
Ku, Y.; Wang, L. K., Decomposition of 2-chlorophenol in aqueous solutions by ozone and UV/ozone processes in the presence of t-Butanol, Ozone Sci. Eng., 2002, 24, 133-144.
Ku, Y.; Wang, W.; Shen, Y. S., Reaction behaviors of decomposition of monocrotophos in aqueous solution by UV and UV/O3 processes, J. Hazard. Mater., 2000, B72, 25-37.
Langlais, B.; Reckhow, D. A.; Brink, D. R., Cooperative Research Report: Ozone in water treatment-Application and Engineering, Lewis Publishers, USA, 1991.
Latifoglu, A.; Gurol, M. D.; The effect of humic acids on nitrobenzene oxidation by ozonation and O3/UV processes, Water Res., 2003, 37, 1879-1889.
Lau, T. K.; Chu, W.; Graham, N., Reaction pathways and kinetics of butylated hydroxyanisole with UV, ozonation, and UV/O3 processes, Water Res., 2006, 41, 765-774.
Lee, M. S., Treatment technology of TFP wastewater from CD-R manufacture, Environmental Protection Monthly (Taiwan), 2002, 8 (2), 160-168.
Lee, Y.; Lee, C.; Yoon, J., Kinetics and mechanisms of DMSO (dimethysulfoxide) degradation by UV/H2O2 process, Water Res., 2004, 38, 2579-2588.
Legrini, O.; Oliveros, E.; Braun, A. M., Photochemical processes for water treatment, Chem. Rev., 1993, 93, 671-698.
Liang, M. T., Treatment FTP solution by supercritical fluid fractionation, Proc., 20th Solid Waste Treatment Conference, November 18-19, National Central University, Taiwan, 2005.
Liu, B.; Liu, X., Direct photolysis of estrogens in aqueous solutions, Sci. Total Environ., 2004, 320, 269-274.
Masschelein, W. J., Ultraviolet light in water and wastewater sanitation, Liewis Publishers, USA, 2002.
McCormick, J. A., A guide to optical storage technology, Richard D. Irwin, Inc., New York, USA, 1990.
Microlab Lab Manual, December 2005. Available from: <http://microlab.eecs.berkeley.edu/labmanual/chap4/4.6.html/>
Nien, Y. T.; Chen, Y. L.; Chen, I. G.; Hwang, C. S.; Su, Y. K.; Chang, S. J.; Juang, F. S., Synthesis of nano-scaled yttrium aluminum garnet phosphor by co-precipitation method with HMDS treatment, Mater. Chem. Phys., 2005, 93, 79-83.
Ning, B.; Graham, N. J. D.; Zhang, Y., Degradation of octylphenol and nonylphenol by ozone – Part I: Direct reaction, Chemosphere, 2007, 68, 1163-1172.
NIST Chemistry Handbook, December 2005. Available from: http://webbook.nist.gov/chemistry/
O’Mahony, M. M.; Dobson, A. D. W.; Barnes, J. D.; Singleton, I., The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil, Chemosphere, 2006, 63, 307-314.
Oppenlander, T., Photochemical Purification of Water and Air Advanced Oxidation Processes (AOPs): Principles, Reaction Mechanisms, Reactor Concept, WILEY-VCH, Germany, 2003.
Park, S. J.; Yooon, T. I.; Bae, J. H.; Seo, H. J.; Park, H. J., Biological treatment of wastewater containing dimethyl sulphoxide from the semiconductor industry, Process Biochem., 2001, 36, 579-589.
Parsons, S., Advanced Oxidation Processes for Water and Wastewater Treatment, IWA Publishing, 2004.
Pecheur, A.; Autran, J. L.; Lazarri, J. P.; Pinard, P., Properties of SiO2 films deposited on silicon at low temperature by plasma enhanced decomposition of hexamethyldisilazane, J. Non-Cryst. Solids, 1999, 245, 20-26.
Peyton, G. R.; Glaze, W. H., Destruction of pollutants in water with ozone in combination with ultraviolet radiation, Environ. Sci. Technol., 1998, 22, 761-767.
Phousongphouang, P. T.; Arey, J., Rate constant for the photolysis of the nitronaphthalenes and methylnitronaphthalenes, J. Photochem. Photobiol., 2003, 157, 301-309.
Rafson, H. J., Odor and VOC control handbook, McGraw-Hill, New York, USA, 1998.
Rakness, K. L., Ozone in drinking water treatment- process design, operation, and optimization, American Water Works Association, USA, 2005.
Roth, J.A.; Sullivan, D.E., Solubility of ozone in water, Ind. Eng. Fundam., 1981, 20, 137-140.
Sangave, P. C.; Gogate, P. R.; Pandit, A. B., Combination of ozonation with conventional aerobic oxidation for distillery wastewater treatment, Chemosphere, 2007, 78, 32-41.
Shen, Y. S.; Ku, Y., Treatment of gas-phase trichloroethene in air by the UV/O3 process, J. Hazard. Mater., 1997, 54, 189-200.
Shen, Y. S.; Ku, Y., Decomposition of gas-phase chloroethenes by UV/O3 process, Water Res., 1998, 32 (9), 2669-2679.
Shen, Y. S.; Ku, Y., Treatment of gas-phase volatile organic compounds (VOCs) by the UV/O3 process, Chemosphere, 1999, 38 (8), 1855-1866.
Shen, Y. S.; Ku, Y., Decomposition of gas-phase trichloroethene by UV/ TiO2 process in the presence of ozone, Chemosphere, 2002, 46, 101-107.
Sotelo, J. L.; Beltran, F. J.; Benitez, F. J.; Beltran-Heredia, J., Ozone decomposition in water: kinetic ktudy, Ind. Eng. Chem. Res., 1987, 26, 39-43.
Staehelin, J.; Buhker, R. E.; Hoigne, J., Ozone decomposition in water studied by pulse radiolysis, J. Phys. Chem., 1984, 88, 5999-6004.
Tadic, J.; Moortgat, G. K.; Wirtz, K., Photolysis of glyoxal in air, J. Photochem. Photobiol., 2006, 177, 116-124.
Takako, M. N.; Kohtaro, K.; Kuniki, K., Continuous degradation of dimethyl sulfoxide to sulfate ion by Hyphomicrobium denitrificans WU-K217, J. of Bioscience and Bioengineering, 2002, 94 (1), 52-56.
Takako, M. N.; Kohtaro, K.; Kuniki, K., Degradation of dimethyl sulfoxide by the immobilized cells of Hyphomicrobium denitrificans WU-K217, Biochem. Eng. J., 2003, 15, 199-204.
Takako, M. N.; Kohtaro, K.; Kuniki, K., Oxidative degradation of dimethyl sulfoxide by Cryptococcus humicolus WU-2, a newly isolated yeast, J. of Bioscience and Bioengineering, 2003, 95 (1), 109-111.
Vollmuth, S.; Niessner, R. N., Degradation of PCDD, PCDF, PAH, PCB and chlorinated phenols during the destruction-treatment of landfill seepage water in laboratory model reactor (UV, Ozone, and UV/Ozone), Chemosphere, 1995, 30 (12), 2317-2331.
Walker, A. B.; Tsouris, C,; DePaoli, D. W.; Klasson, K. T., Ozonation of solution organics in aqueous solutions usong microbubbles, Ozone Sci. Eng., 2001, 23, 77-87.
Wang, J. H.; Ray, M. B., Application of ultraviolet photooxidation to remove organic pollutants in the gas phase, Sep. Purif. Technol., 2000, 19, 11-20.
Wang, X.; Huang, X.; Zuo, C.; Hu, H., Kinetics of quinoline degradation by UV/O3 in aqueous phase, Chemosphere, 2004, 55, 733-741.
Werner, R. H.; Johnson, M. D., Direct photolysis of trichloroethene in air: effect of cocontaminants, toxicity of products, and hydrothermal treatment of products, Environ. Sci. Technol., 1996, 30, 414-421.
Williams, E. W.; Lancaster, G., The CD-ROM and optical disc recording system, Oxford University Press Inc., New York, USA, 1994.
Wu, H. H., Removal of VOCs Emission from CD-R/DVD-R manufacturing process-Application of advanced oxidation technology, Chemical Monthly (Taiwan), 2003, 5, 42-47.
Yamada, H.; Tsuno, H., Characteristics of advanced oxidation processes for the decomposition of organic compounds, Journal of the Chinese Institute of Environmental Engineering, 2000, 10 (1), 61-68.
Yang, P. Y.; Tin, T. M., Integrating entrapped mixed microbial cell (EMMC) technology for treatment of wastewater containing dimethyl sulfoxide (DMSO) for reuse in semiconductor industries, Clean Techn. Environ. Policy, 2003, 6, 43-50.
Zhang, P.; Liu, J., Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study, J. Photochem. Photobiol., A, 2004, 167, 87-94.
Zhang, X.; Chen, P.; Wu, F.; Deng, N.; Liu, J.; Fang, T., Degradation of 17α-ethinylestradiol in aqueous solution by ozonation, J. Hazard. Mater., 2006, B133, 291-298.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code