博碩士論文 etd-0911107-223003 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 楊欣泰(Hsin-Tai Yang) 電子郵件信箱 E-mail 資料不公開
畢業系所 電機工程學系研究所(Electrical Engineering)
畢業學位 博士(Ph.D.) 畢業時期 95學年第2學期
論文名稱(中) 形態學結構元件分解與影片人像擷取技術之研究
論文名稱(英) Decomposition of Morphological Structuring Elements and Segmentation of Human Objects in Video Sequences
檔案
  • etd-0911107-223003.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內校外均不公開

    論文語文/頁數 英文/125
    統計 本論文已被瀏覽 5059 次,被下載 0 次
    摘要(中) 隨著影像處理技術的快速發展,各種科學學門如醫學、氣象、天文、工業控制等都出現了許多前所未見的應用。本論文的主要內容係描述我們對於影像處理領域進行研究後所獲致的成果。就技術上而言,這些成果可分為兩部分。第一部份是關於形態學結構元件的分解,第二部分則探討了影像中人體物件辨識的問題。
     就第一部份成果而言,一個可將結構元件分解成較小元件的整合性方法被提出。藉由將分解問題轉化成一個線性限制集,整數線性規劃技術即可被用來解最佳分解。相較於其它現存的方法,我們提出的方法更為一般性,並有許多優點。第一,它是以系統化的方式對任意形狀的結構元件進行分解。第二,對於凸影像,分解後所獲得的小結構元件並不限制為3x3大小。第三,使用者可自由選定候選結構元件集。最後,最佳分解的標準可依應用不同而進行彈性調整。
    就第二部份成果而言,我們提出一個包含三階段的人體影像辨識系統。在第一階段中,針對要進行分割的主影像,我們提出運用了結合空間觀念與顏色屬性的混和式自我分群技術來達到減少小斷片數量的目的。在第二階段中,臉形由八向多邊形模擬表示,而臉部特徵則包含雙眼與嘴。我們將這些資訊參數化後輸入到已訓練完成的類神經網路進行臉部辨識。在最後階段中,利用辨識出的臉部區域的大小與方向,並運用影片中各畫面間的動作資訊來偵測大致的身體區域,然後再利用類神經網路來辨識模糊未分類的區域。
    摘要(英) With the rapid development of image processing techniques, many unprecedented applications are emerging from all kinds of science branches, such as medicine, meteorology, astronomy, industrial control, etc. This dissertation presents an achievement of our research work related to the image processing field. Technically, the work consists of two parts. The first part concerns decomposition of morphological structuring elements while the second part explores the problems of human object segmentation in video/image data.
     In the first part, an integrated method, aiming to decompose a morphological structuring element into dilations of smaller ones, is proposed. By first formulating the decomposition problem into a set of linear constraints, the integer linear programming echnique is then applied to obtain an optimal decomposition. Compared to other existing approaches, the proposed method is more general and has several advantages. Firstly, it provides a systematic way of decomposing arbitrarily shaped structuring elements. Secondly, for convex images, factors can be of any size, not restricted to 3x3. Thirdly, the candidate set can be freely assigned by the user and finally the criteria of optimality can be flexible.
     In the second part, we present a three-stage system for segmentation of multiple human objects in a video stream. In the first stage, for a base frame to be segmented, we propose a hybrid self-clustering technique that incorporates the spatial concept as well as color attributes to reduce the number of small segments. In the second stage, the face shape modeled by the eight-directional convex polygons and the face features including two eyes and a mouth are extracted, parameterized, and fed to a trained neural network for detection of a human face. In the last stage, the size and orientation of the detected face region as well as the motion information among frames are used to roughly detect the corresponding body. To locate human objects more accurately, another neural network is constructed for recognizing the ambiguous regions.
    關鍵字(中)
  • 影像處理
  • 形態學
  • 類神經網路
  • 人像擷取
  • 分群
  • 分群
  • 人像擷取
  • 類神經網路
  • 形態學
  • 影像處理
  • 關鍵字(英)
  • image processing
  • morphology
  • clustering
  • human object segmentation
  • neural network
  • neural network
  • human object segmentation
  • clustering
  • morphology
  • image processing
  • 論文目次 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
    List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
    List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
    1 Introduction 1
    1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
    1.2 Organization of this Dissertation . . . . . . . . . . . . . . . . . . . . . . . 3
    2 Preliminary Background 5
    2.1 Mathematical Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
    2.1.1 Dilation and Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . 7
    2.1.2 Opening and Closing . . . . . . . . . . . . . . . . . . . . . . . . . . 10
    2.1.3 Hit-and-Miss Transform . . . . . . . . . . . . . . . . . . . . . . . . 14
    2.2 Integer Linear Programming (ILP) . . . . . . . . . . . . . . . . . . . . . . 15
    2.2.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
    2.2.2 Solving the ILP Problems . . . . . . . . . . . . . . . . . . . . . . . 18
    2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
    2.3.1 Architecture and Operation . . . . . . . . . . . . . . . . . . . . . . 22
    2.3.2 Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 24
    2.3.3 Backpropagation Networks . . . . . . . . . . . . . . . . . . . . . . 26
    3 Optimal Decomposition of Morphological Structuring Elements 29
    3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
    3.2 Chain Code Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 31
    3.3 Decomposition Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
    3.4 Formulating Decomposition in Constraints . . . . . . . . . . . . . . . . . . 36
    3.4.1 Images without Origins Specified . . . . . . . . . . . . . . . . . . . 36
    3.4.2 Images with Origins Specified . . . . . . . . . . . . . . . . . . . . . 39
    3.5 Optimal Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
    3.5.1 Solving by Integer Linear Programming . . . . . . . . . . . . . . . 42
    3.5.2 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
    3.6 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
    4 Segmentation of Multiple Human Objects in Video Sequences 52
    4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
    4.2 Overview of Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 55
    4.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
    4.3.1 Block Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
    4.3.2 Segment Labeling and Small SegmentsMerging . . . . . . . . . . . 62
    4.4 Detection of Faces and Bodies . . . . . . . . . . . . . . . . . . . . . . . . . 65
    4.4.1 Detection of Skin Segments . . . . . . . . . . . . . . . . . . . . . . 65
    4.4.2 Generation of Candidate Face Regions . . . . . . . . . . . . . . . . 66
    4.4.3 Postprocessing of Candidate Face Regions . . . . . . . . . . . . . . 71
    4.4.4 Verification of Human Faces . . . . . . . . . . . . . . . . . . . . . . 72
    4.4.5 Detection of Human Bodies . . . . . . . . . . . . . . . . . . . . . . 77
    4.5 Refinement of Human Objects . . . . . . . . . . . . . . . . . . . . . . . . . 79
    4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
    4.6.1 Hybrid Fuzzy Clustering . . . . . . . . . . . . . . . . . . . . . . . . 82
    4.6.2 Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
    4.6.3 Human Object Segmentation . . . . . . . . . . . . . . . . . . . . . 89
    5 Conclusion and Future Work 94
    5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
    5.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
    Bibliography 98
    參考文獻 [1] G. Anelli, A. Broggi, and G. Destri, “Decomposition of arbitrarily
    shaped binary morphological structuring elements using genetic
    algorithms,” IEEE Transactions on Pattern Analysis and
    Machine Intelligence, vol. 20, no. 2, pp. 217–224, 1998.
    [2] M. Barais, T. Caljon, V. Enescu, and H. Sahli, “A framework
    for integrating MPEG-7 knowledge templates into video surveillance
    applications,” in Proceedings of 2006 IEEE 8th Workshop
    on Multimedia Signal Processing, (Victoria, Canada), pp. 501–
    504, Oct. 2006.
    [3] R. Brown, H. Zhu, and J. Mitchell, “Distributed vector processing
    of a new local multiscale Fourier transform for medical
    imaging applications,” IEEE Transactions on Medical Imaging,
    vol. 24, no. 5, pp. 689–691, 2005.
    [4] A. A. T. Bui, C. Morioka, J. D. N. Dionisio, D. B. Johnson,
    U. Sinha, S. Ardekani, R. K. Taira, D. R. Aberle, S. E. El-Saden,
    and H. Kangarloo, “opensourcePACS: An extensible infrastructure
    for medical image management,” IEEE Transactions on Information Technology in Biomedicine, vol. 11, no. 1, pp. 94–109,
    2007.
    [5] D. Chai and K. N. Ngan, “Face segmentation using skin-color
    map in videophone applications,” IEEE Transactions on Circuits
    and Systems for Video Technology, vol. 9, no. 4, pp. 551–
    564, 1999.
    [6] S.-C. Chen, M.-L. Shyu, S. Peeta, and C. Zhang, “Spatiotemporal
    vehicle tracking: the use of unsupervised learning-based segmentation
    and object tracking,” IEEE Robotics and Automation
    Magazine, vol. 12, no. 1, pp. 50–58, 2005.
    [7] N. Doulamis, A. Doulamis, and S. Kollias, “Improving the performance
    of MPEG compatible encoding at low bit rates using
    adaptive neural networks,” Real-Time Imaging, vol. 6, no. 5,
    pp. 327–345, 2000.
    [8] C. Erdem, B. Sankur, and A. Tekalp, “Performance measures for
    video object segmentation and tracking,” IEEE Transactions on
    Image Processing, vol. 13, no. 7, pp. 937–951, 2004.
    [9] J. Fan, D. K. Y. Yau, A. K. Elmagarmid, and W. G. Aref, “Automatic
    image segmentation by integrating color-edge extraction
    and seeded region growing,” IEEE Transactions on Image Processing,
    vol. 10, no. 10, pp. 1454–1466, 2001.
    [10] H. Freeman, “Computer processing of line-drawing images,”
    Computer Surveys, vol. 6, no. 1, pp. 57–97, 1974.
    [11] J. A. Freeman and D. M. Skapura, Neural Networks: Algorithms,
    Applications, and Programming Techniques. Reading,
    MA, USA: Addison-Wesley, 1991.
    [12] R. S. Furis, V. Krueger, and R. M. Cesar, “A wevelet subspace
    method for real-time face tracking,” Real Time Imaging, vol. 4,
    pp. 339–350, 2004.
    [13] P. D. Gader, “Separable decomposition and approximation of
    gray-scale morphological templates,” CVGIP, Image Understanding,
    vol. 53, no. 3, pp. 288–296, 1991.
    [14] C. Garcia and G. Tziritas, “Face detection using quantized skin
    color regions merging and wavelet packet analysis,” IEEE Transactions
    on Multimedia, vol. 1, no. 3, pp. 264–277, 1999.
    [15] R. S. Garfinkel and G. L. Nemhauser, Integer Programming. New
    York, NY, USA: John Wiley & Sons, 1972.
    [16] A. Gholipour, N. Kehtarnavaz, R. Briggs, M. Devous, and
    K. Gopinath, “Brain functional localization: A survey of image
    registration techniques,” IEEE Transactions on Medical Imaging,
    vol. 26, no. 4, pp. 427–451, 2007.
    [17] J. Grazzini, D. Bereziat, and Z. Herlin, “Analysis of cloudy
    structures evolution on meteorological satellite acquisitions,” in
    Proceedings of 2001 International Conference on Image Processing,
    vol. 3, (Thessaloniki, Greece), pp. 760–763, Oct. 2001.
    [18] J. Haddadnia, M. Ahmadi, and K. Faez, “An efficient feature
    extraction method with pseudo-Zernike moment in RBF neural
    network-based human face recognition system,” EURASIP
    Journal on Applied Signal Processing, vol. 3, no. 9, pp. 890–901,
    2003.
    [19] A. Hadid, M. Pietikainen, and B. Martinkauppi, “Color-based
    face detection using skin locus model and hierarchical filtering,”
    in Proceedings of 16th International Conference on Pattern
    Recognition, vol. 4, (Quebec, Canada), pp. 196–200, Oct. 2002.
    [20] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network
    Design. Boston, MA, USA: PWS, 1996.
    [21] P. Hanzlik, P. Pata, J. Schindler, and S. Vitek, “Influence
    of lossy compression techniques on processing precision of astronomical
    images,” in Proceedings of 5th IEEE International
    Symposium on Signal Processing and Information Technology,
    (Athens, Greece), pp. 346–351, Dec. 2005.
    [22] R. M. Haralick and L. G. Shapiro, Computer and Robot Vision,
    vol. 1. Reading, MA, USA: Addison-Wesley, 1992.
    [23] R. F. Hashimoto and J. Barrera, “A note on Park and Chin’s al
    gorithm,” IEEE Transactions on Pattern Analysis and Machine
    Intelligence, vol. 24, no. 1, pp. 139–144, 2002.
    [24] S. Haykin, Neural Networks - A Comprehensive Foundation. Upper
    Saddle River, NJ, USA: Prentice-Hall, 1999.
    [25] B. Heisele, T. Serre, S. Prentice, and T. Poggio, “Hierarchical
    classification and feature reduction for fast face detection with
    support vector machines,” Pattern Recognition, vol. 36, no. 9,
    pp. 2007–2017, 2003.
    [26] R. L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face detection
    in color images,” IEEE Transactions on Pattern Analysis and
    Machine Intelligence, vol. 24, no. 5, pp. 696–706, 2002.
    [27] L.-M. Huang, “A neuro-fuzzy approach for multiple human objects
    segmentation,” Master’s thesis, National Sun Yat-Sen University,
    Taiwan, ROC, Jul. 2003.
    [28] O. Jesorsky, K. J. Kirchberg, and R.W. Frischholz, “Robust face
    detection using the Hausdorff distance,” in Proceedings of 3rd
    International Conference on Audio- and Video-based Biometric
    Person Authentication, LNCS-2091, (Halmstad, Sweden),
    pp. 90–95, Jun. 2001.
    [29] S. Kamijo and M. Sakauchi, “Segmentation of vehicles and
    pedestrians in traffic scene by spatio-temporal Markov random
    field model,” in Proceedings of 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3,
    (Hongkong, China), pp. 361–364, Apr. 2003.
    [30] T. Kanungo, R. M. Haralick, and X. Zhuang, “B-code dilation
    and structuring element decomposition for restricted convex
    shapes,” Proceedings of the SPIE - The International Society for
    Optical Engineering, vol. 1350, pp. 419–429, 1990.
    [31] H. Kim, W. Kang, J. Shin, and S. Park, “Face detection using
    template matching and ellipse fitting,” IEICE Transactions on
    Information and Systems, vol. E38-D, no. 11, pp. 2008–2011,
    2000.
    [32] K. A. Kim, S. Y. Oh, and H. C. Choi, “Facial feature extraction
    using PCA and wavelet multi-resolution images,” in Proceedings
    of 6th IEEE International Conference on Automatic Face and
    Gesture Recognition, (Seoul, Korea), pp. 439–444, May 2004.
    [33] B. Klimpak, M. Grgic, and K. Delac, “Acquisition of a face
    database for video surveillance research,” in Proceedings of 48th
    International Symposium ELMAR-2006 focused on Multimedia
    Signal Processing and Communications,, (Zadar, Croatia),
    pp. 111–114, Jun. 2006.
    [34] I. Kompatsiaris and M. G. Strintzis, “Spatiotemporal segmentation
    and tracking of objects for visualization of videoconference
    image sequence,” IEEE Transactions on Circuits and Systems
    for Video Technology, vol. 10, no. 8, pp. 1388–1402, 2000.
    [35] L. Koskinen, A. Paasio, and K. Halonen, “Motion estimation
    computational complexity reduction with CNN shape segmentation,”
    IEEE Transactions on Circuits and Systems for Video
    Technology, vol. 15, no. 6, pp. 771–777, 2005.
    [36] W.-K. Lam, H. Ip, and C.-K. Li, “Approaches to decompose flat
    structuring element for fast overlapping search morphological
    algorithm,” in Proceedings of 14th International Conference on
    Pattern Recognition, vol. 2, pp. 1461–1463, Aug. 1998.
    [37] K. M. Lam and Y. L. Li, “An efficient approach for facial feature
    detection,” in Proceedings of 4th International Conference on
    Signal Processing, vol. 2, (Beijing, China), pp. 1100–1103, Oct.
    1998.
    [38] S.-J. Lee and C.-S. Ouyang, “A neuro-fuzzy system modeling
    with self-constructing rule generation and hybrid SVD-based
    learning,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 3,
    pp. 341–353, 2003.
    [39] S.-J. Lee, C.-S. Ouyang, and S.-H. Du, “A neuro-fuzzy approach
    for segmentation of human objects in image sequences,” IEEE
    Transactions on Systems, Man and Cybernetics, Part B, vol. 33,
    no. 3, pp. 420–437, 2003.
    [40] Y. Li, H. Chen, M. Zhao, and P. Qu, “Self-adaptive cluster
    segmentation aircraft objects in aerial images,” in Proceedings
    of 5th World Congress on Intelligent Control and Automation,
    vol. 6, (Hangzhou, China), pp. 5415–5418, Jun. 2004.
    [41] D. Li and G. Ritter, “Decomposition of separable and symmetric
    convex templates,” Proceedings of the SPIE - The International
    Society for Optical Engineering, vol. 1350, pp. 408–418, 1990.
    [42] C. Lin and K. C. Fan, “Human face detection using geometric
    triangle relationship,” in Proceedings of International Conference
    on Pattern Recognition, vol. 2, (Barcelona, Spain), pp. 941–
    944, Sep. 2000.
    [43] L. Liu and G. Fan, “Combined key-frame extraction and objectbased
    video segmentation,” IEEE Transactions on Circuits and
    Systems for Video Technology, vol. 15, no. 7, pp. 869–884, 2005.
    [44] Y. Liu and Y. Zheng, “Video object segmentation and tracking
    using ψ-learning classification,” IEEE Transactions on Circuits
    and Systems for Video Technology, vol. 15, no. 7, pp. 885–899,
    2005.
    [45] F. Long, D. Feng, H. Peng, andW.-C. Siu, “Extracting semantic
    video objects,” IEEE on Computer Graphics and Applications,
    vol. 21, no. 1, pp. 48–55, 2001.
    [46] K. N. T. Meier, “Automatic segmentation of moving objects for
    video object plane generation,” IEEE Transactions on Circuits
    and Systems for Video Technology, vol. 8, no. 1, pp. 525–538,
    1998.
    [47] M. Nachtegael and E. Kerre, “Decomposition and constructing
    fuzzy morphological operations over α-cuts: continuous and discrete
    case,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 5,
    pp. 615–626, 2000.
    [48] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
    Algorithm and Complexity. Englewood Cliffs, NJ, USA:
    Prentice-Hall, 1982.
    [49] H. Park and R. T. Chin, “Optimal decomposition of convex
    morphological structuring elements for 4-connected parallel array
    processors,” IEEE Transactions on Pattern Analysis and
    Machine Intelligence, vol. 16, no. 3, pp. 304–313, 1994.
    [50] H. Park and R. T. Chin, “Decomposition of arbitrarily shaped
    morphological structuring elements,” IEEE Transactions on
    Pattern Analysis and Machine Intelligence, vol. 17, no. 1, pp. 2–
    15, 1995.
    [51] H. Park and J. Yoo, “Structuring element decomposition for efficient
    implementation of morphological filters,” IEE Proceedings
    - Vision, Image and Signal Processing, vol. 148, no. 1, pp. 31–35,
    2001.
    [52] A. Prieto, F. Bellas, R. Duro, and F. Lopez-Pena, “Adaptive
    spatio-spectral hyperspectral image processing for online industrial
    classification of inhomogeneous materials,” in Proceedings
    of 2006 IEEE International Conference on Computational Intelligence
    for Measurement Systems and Applications, (La Coruma,
    Spain), pp. 116–121, Jul. 2006.
    [53] H. Rowley, S. Baluja, and T. Kanade, “Neural network-based
    face detection,” IEEE Transactions on Pattern Analysis and
    Machine Intelligence, vol. 20, no. 1, pp. 23–38, 1998.
    [54] D. E. Rumehart and J. L. McClelland, Parallel Distributed Processing
    (Two Volumes). Cambridge, MA, USA: MIT Press,
    1986.
    [55] E. Saber and A. Tekalp, “Frontal-view face detection and facial
    feature extraction using color, shape and symmetry based cost
    functions,” Pattern Recognition Letters, vol. 17, no. 8, pp. 669–
    680, 1998.
    [56] J. Serra, Image Analysis and Mathematical Morphology. San
    Diego, CA, USA: Academic Press, 1982.
    [57] X. Song and G. Fan, “Joint key-frame extraction and object
    segmentation for content-based video analysis,” IEEE Transactions
    on Circuits and Systems for Video Technology, vol. 16,
    no. 7, pp. 904–914, 2006.
    [58] K. K. Sung and T. Poggio, “Example-based learning for view
    based human face detection,” IEEE Transactions on Pattern
    Analysis and Machine Intelligence, vol. 20, no. 1, pp. 39–51,
    1998.
    [59] P. Sussner and G. X. Ritter, “Decomposition of gray-scale morphological
    templates using rank method,” IEEE Transactions
    on Pattern Analysis and Machine Intelligence, vol. 19, no. 6,
    pp. 649–658, 1997.
    [60] P. Sussner and G. X. Ritter, “Rank-based decompositions of
    morphological templates,” IEEE Transactions on Image Processing,
    vol. 9, no. 8, pp. 1420–1430, 2000.
    [61] S. Takriti and P. D. Gader, “Local decomposition of gray-scale
    morphological templates,” Journal of Mathematical Imaging and
    Vision, vol. 2, no. 1, pp. 39–50, 1992.
    [62] A. Tremeau and P. Colantoni, “Region adjacency graph applied
    to color image segmentation,” IEEE Transactions on Image Processing,
    vol. 9, no. 4, pp. 735–744, 2000.
    [63] Y. Tsaig and A. Averbuch, “Automatic segmentation of moving
    objects in video sequences: a region labeling approach,”
    IEEE Transactions on Circuits and Systems for Video Technology,
    vol. 12, no. 7, pp. 597–612, 2002.
    [64] H. Wang and S.-F. Chang, “A highly efficient system for automatic
    face region detection in MPEG video,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 7,
    no. 4, pp. 615–628, 1997.
    [65] R. S.Wang and Y.Wang, “Facial feature extraction and tracking
    in video sequences,” in Proceedings of IEEE 1st Workshop on
    Multimedia Signal Processing, (New Jersey, USA), pp. 233–238,
    Jun. 1997.
    [66] H. Wu, Q. Chen, and M. Yachida, “Face detection from color
    images using a fuzzy pattern matching method,” IEEE Transactions
    on Pattern Analysis and Machine Intelligence, vol. 21,
    no. 6, pp. 557–563, 1999.
    [67] J. Xu, “Decomposition of convex polygonal morphological structuring
    elements into neighborhood subsets,” IEEE Transactions
    on Pattern Analysis and Machine Intelligence, vol. 13, no. 2,
    pp. 153–162, 1991.
    [68] J. Xu, “Morphological representation of 2-d binary shapes using
    rectangular components,” in Proceedings of 1999 International
    Conference on Image Processing, vol. 2, (Kobe, Japan), pp. 862–
    866, Feb. 1999.
    [69] J. Xu, “Efficient morphological shape representation with overlapping
    disk components,” IEEE Transactions on Image Processing,
    vol. 10, no. 9, pp. 1346–1356, 2001.
    [70] J. Xu, “Morphological decomposition of 2-D binary shapes into
    modestly overlapped octagonal and disk components,” IEEE
    Transactions on Image Processing, vol. 16, no. 2, pp. 337–348,
    2007.
    [71] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face
    recognition: A literature survey,” ACM Computing Surveys,
    vol. 35, no. 4, pp. 399–458, 2003.
    [72] W.-S. Zheng, J.-H. Lai, and P. C. Yuen, “GA-Fisher: A new
    LDA-based face recognition algorithm with selection of principal
    components,” IEEE Transactions on Systems, Man, and
    Cybernetics, vol. 35, no. 5, pp. 1065–1078, 2005.
    [73] X. Zhuang and R. M. Haralick, “Morphological structuring element
    decomposition,” Computer, Vision, Graphics, and Image
    Processing, vol. 35, no. 9, pp. 370–382, 1986.
    口試委員
  • 謝朝和 - 召集委員
  • 吳志宏 - 委員
  • 李宗南 - 委員
  • 潘欣泰 - 委員
  • 賴智錦 - 委員
  • 黃宗傳 - 委員
  • 李錫智 - 指導教授
  • 口試日期 2007-07-17 繳交日期 2007-09-11

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫