博碩士論文 etd-0911109-011831 詳細資訊


[回到前頁查詢結果 | 重新搜尋]

姓名 宋偉誠(Wei-Cheng Sung) 電子郵件信箱 E-mail 資料不公開
畢業系所 電機工程學系研究所(Electrical Engineering)
畢業學位 碩士(Master) 畢業時期 98學年第1學期
論文名稱(中) 車載式網路動態道路導航演算法
論文名稱(英) A Dynamic Navigational Algorithm for VANET
檔案
  • etd-0911109-011831.pdf
  • 本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
    請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
    論文使用權限

    電子論文:校內公開,校外永不公開

    論文語文/頁數 中文/72
    統計 本論文已被瀏覽 5094 次,被下載 51 次
    摘要(中) 近年來在全球定位系統技術成熟加上道路導航設備日漸輕、薄、小、耗電少待機時間長,使得用路人大量使用此一便捷的資訊科技產品,來做為道路導航的輔助工具。本論文提出動態道路導航演算法( DNA )可結合全球定位系統技術、電子地圖圖資系統與無線網路環境(如DSRC、VANET、802.11p、WLAN、WiMAX…等),經計算可得各候選道路的道路等級、道路長度、平均車距、平均車速,進而得到各候選道路的道路積分表,從中選取積分最高的候選道路成為最佳候選道路來提供使用者動態導航( Dynamic Navigation )服務。且DNA利用動態區塊再廣播( DBB )來進行道路要求訊息( R-REQ )廣播的功能,此舉可由最前方區塊內的友車們來完成R-REQ再廣播的動作,可達到以最少Hop數傳送R-REQ到所有在搜尋距離內的友車,此結果可大量減少再廣播封包的傳送數量。雖DNA DBB再廣播時會較其他導航機制多出些許時間,但如此卻可較其他導航機制尋找出最佳的候選道路來行駛。最後我們利用C++程式開發語言,自行撰寫道路導航模擬軟體來驗證DNA與其他導航機制的各項性能表現。由模擬實驗結果所得資料顯示,DNA較其他導航機制之最大成效在於以較短的行車距離、較快的行車車速以達成用路人衷心期盼的結果-最短行車時間到達目的地。
    摘要(英) In recent years, road navigational devices equipped with GPS technologies are becoming more and more popular. These devices can facilitate drivers to guide the way to reach their destinations. In this Thesis, we propose a dynamic route navigational algorithm (DNA) that can be combined with GPS, electronic map system, and wireless technologies (such as DSRC, VANET, 802.11p, WLAN, WiMAX ..., etc.). By calculating metric from road type, road length, average distance, and average speed of each available candidate road, DNA generates road score table and choose the route with the highest score among candidate routes to reach destination. Additionally, in DNA, a Dynamic Block re-Broadcasting (DBB) scheme is designed to carry out Road-Request message (R-REQ) rebroadcast function. The R-REQ rebroadcast function provides two advantages: (i) It can broadcast R-REQ to a specific coverage area with least hop counts; (ii) It can reduce the number of R-REQ broadcast packets significantly. Although DNA takes more processing time than other navigational algorithms, it can greatly reduce the traveling time by determining the best route to destination.
    For the purpose of performance evaluation, we develop a simulator by using C++ programming language to compare the performance of DNA with other navigational algorithms. Simulation results have shown that DNA performs much better than other navigational algorithms in reaching destination with shorter travel distance and shorter traveling time.
    關鍵字(中)
  • 動態導航
  • 關鍵字(英)
  • VANET
  • DNA
  • DBB
  • Dynamic Navigation
  • WLAN
  • 論文目次 第一章 導論 1
    1.1 研究動機 1
    1.2 研究方向與方法 2
    1.3 章節介紹 3
    第二章 車載式網路與道路導航相關研究 4
    2.1 車載式網路 5
    2.1.1 簡介 5
    2.1.2 車載式網路通訊協定介紹與相關研究 5
    2.1.2.1 DSRC與IEEE 802.11p相關研究 7
    2.1.2.2 VANET相關研究 8
    2.1.3 車載式網路路由協定介紹與相關研究 9
    2.1.3.1 Proactive ( Table-driven ) 路由協定相關研究 11
    2.1.3.2 Reactive ( Demand-driven ) 路由協定相關研究 11
    2.1.3.3 其他路由協定相關研究 12
    2.2 道路導航 14
    2.2.1 簡介與相關研究 14
    2.2.2 道路導航設備導航參數比較 15
    2.3 本論文的動態道路導航演算法 15
    第三章 DNA架構與運作機制 16
    3.1 DNA 封裝格式與訊息格式 16
    3.1.1 DNA 封裝格式 ( DNA Encapsulations ) 16
    3.1.2 R-REQ ( Road message REQuest format ) 17
    3.1.3 R-REP ( Road message REPly format ) 19
    3.1.4 R-INFO ( Road-INFOrmation format ) 道路資訊格式 20
    3.2 DNA 權值和道路積分表 ( DNA Metrics & Road Score Table ) 22
    3.3 DNA 時態與運作方式 25
    3.4 DNA 演算法 35
    3.4.1 DNA Detailed Flow Chart 35
    3.4.2 DNA Pseudo Codes 36
    第四章 模擬實驗與結果分析 38
    4.1 模擬環境與簡例說明 38
    4.1.1 模擬道路拓樸與參數設定 38
    4.1.2 簡例說明 40
    4.2 模擬實驗與結果分析 42
    4.2.1 模擬實驗一 42
    4.2.1.1 平均行車距離 43
    4.2.1.2 平均行車車速 44
    4.2.1.3 平均行車時間 45
    4.2.2 模擬實驗二 46
    4.3.2.1 Block再廣播使用百分比 48
    4.3.2.2尋得最佳候選道路所需額外時間 49
    第五章 結論與未來工作 51
    5.1 結論 51
    5.2 未來工作 52
    參考文獻 ( References ) 53
    ACRONYM 57
    INDEX 58
    參考文獻 [1] Yi Qian, Kejie Lu, and N. Moayeri, “A Secure VANET MAC Protocol for DSRC Applications,” IEEE Global Telecommunications Conference, pp. 1-5, Nov. 2008.
    [2] T. K. Mak, K. P. Laberteaux, R. Sengupta, and M. Ergen, “Multichannel Medium Access Control for Dedicated Short-Range Communications,” IEEE Transactions on Vehicular Technology, vol. 58, issue 1, pp. 349-366, Jan. 2009.
    [3] M. Wellens, B. Westphal, and P. Mahonen, “Performance Evaluation of IEEE 802.11-based WLANs in Vehicular Scenarios,” IEEE Vehicular Technology Conference, pp. 1167-1171, April 2007.
    [4] S.Y. Wang, C.L. Chou, K.C. Liu, T.W. Ho, W.J. Hung, C.F. Huang, M.S. Hsu, H.Y. Chen, and C.C. Lin, “Improving the Channel Utilization of IEEE 802.11p-1609 Networks,” IEEE Wireless Communications and Networking Conference, pp. 1-6, April 2009.
    [5] M. Torrent-Moreno, J. Mittag, P. Santi, and H. Hartenstein, “Vehicle-to-Vehicle Communication - Fair Transmit Power Control for Safety-Critical Information,” IEEE Transactions on Vehicular Technology, vol. 58, issue 7, pp. 3684-3703, Sept. 2009.
    [6] Jin Zhang, Qian Zhang, and Weijia Jia, “VC-MAC - A Cooperative MAC Protocol in Vehicular Networks,” IEEE Transactions on Vehicular Technology, vol. 58, issue 3, pp. 1561-1571, March 2009.
    [7] G. Kounga, T. Walter, and S. Lachmund, “Proving Reliability of Anonymous Information in VANETs,” IEEE Transactions on Vehicular Technology, vol. 58, issue 6, pp. 2977-2989, July 2009.
    [8] M. Nekovee, “Epidemic algorithms for reliable and efficient information dissemination in vehicular,” IET Intelligent Transport Systems, vol. 3, issue 2, pp. 104-110, June 2009.
    [9] M.S. Bouassida and M. Shawky, “On the congestion control within VANET,” IEEE 1st IFIP Wireless Days, pp. 1-5, Nov. 2008.
    [10] F. Gil-Castineira, F. J. Gonzalez-Castano, and L. Franck, “Extending Vehicular CAN Fieldbuses With Delay-Tolerant Networks,” IEEE Transactions on Industrial Electronics, vol. 55, issue 9, pp. 3307-3314, Sept. 2008.
    [11] Shou-Chih Lo and Wei-Kun Lu, “Design of Data Forwarding Strategies in Vehicular Ad Hoc Networks,” IEEE 69th Vehicular Technology Conference, pp. 1-5, April 2009.
    [12] Yuh-Shyan Chen, Ching-Hsueh Cheng, Chih-Shun Hsu, and Ge-Ming Chiu, “Network Mobility Protocol for Vehicular Ad Hoc Networks,” IEEE Wireless Communications and Networking Conference, pp. 1-6, April 2009.
    [13] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced Distance
    Vector (DSDV) for Mobile Computers,” ACM SIGCOMM Conference on
    Communications Architectures, Protocols and Applications, pp. 234-244,
    Aug 1994.
    [14] S. Murthy and J.J. Garcia-lun-aveces, “A Routing Protocol for Packet Radio
    Networks,” ACM International Conference on Mobile Computing and
    Networking, pp. 86-95, Nov. 1995.
    [15] Ching-Chuan Chiang, Hsiao-Kuang Wu, Winston Liu, and Mario Gerla,
    “Routing in Clustered Multihop, Mobile Wireless Networks with Fading
    Channel,” IEEE Singapore International Conference on Networks, pp. 197-211,
    April 1997.
    [16] Philippe Jacquet, Paul Muhlethaler, Amir Qayyum, Anis Laouiti, Laurent Viennot, and Thomas Clausen, “Optimized Link State Routing Protocol (OLSR),” IETF RFC 3626, Oct. 2003.
    [17] C. Perkins, E. Royer and S. Das, “Ad hoc On-demand Distance Vector (AODV)
    Routing,” IETF RFC 3561, July 2003.
    [18] David Johnson, David Maltz, and Yih-Chun Hu, “The Dynamic Source Routing
    Protocol for Mobile Ad Hoc Networks for IPv4,” IETF RFC 4728, Feb. 2007.
    [19] I. Chakeres and C. Perkins, “Dynamic MANET On-demand Routing Protocol
    (DYMO),” IETF Internet Draft, June 2008.
    [20] V. Park and S. Corson, “Temporally-Ordered Routing Algorithm (TORA)
    Version 1, Functional Specification,” IETF Internet Draft, June 2001.
    [21] Z. J. HAAS, M. R. PEARLMAN, and P. SAMAR, “The Zone Routing Protocol
    (ZRP) for Ad Hoc Networks,” IETF Internet Draft, July 2002.
    [22] M. Koubek, S. Rea, and D. Pesch, “A Novel Reactive Routing Protocol for
    Applications in Vehicular Environments,” The 11th International Symposium on
    Wireless Personal Multimedia Communications, pp. 1883-1192, Sep. 2008.
    [23] A. Detti, N. Blefari-Melazzi, and C. Loreti, "Overlay, Boruvka-based, Ad-hoc
    multicast Protocol: description and performance analysis," IEEE International
    Conference on Communications, pp. 24-28, June 2007.
    [24] Pi-Cheng Hsiu and Tei-Wei Kuo, "A Maximum-Residual Multicast Protocol for
    Large-Scale Mobile Ad Hoc Networks," IEEE Transactions on Mobile Computing, Feb. 2009.
    [25] Jie Du and M.J. Barth, “Next-Generation Automated Vehicle Location Systems - Positioning at the Lane Level,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, issue 1, pp. 48-57, March 2008.
    [26] Xiangui Liu, “An activity-based architecture for intelligent vehicle navigation,”
    IEEE 7th World Congress on Intelligent Control and Automation, pp. 8277-8281,
    June 2008.
    [27] Wei Wang and Dan Wang, “Land vehicle navigation using odometry INS vision integrated system,” IEEE Conference on Cybernetics and Intelligent Systems, pp. 754-759, Sep. 2008.
    [28] Tsu-Tian Lee, Hsin-Han Chiang, Jau-Woei Perng, Jhong-Jie Jiang, and Bing-Fei Wu, “Multi-sensor information integration on DSP platform for vehicle navigation safety and driving aid,” IEEE International Conference on Networking, Sensing and Control, pp. 653-658, March 2009.
    [29] Shyang-Jye Chang, Yung-Yue Chen, and Chiung-Yau Huang, “The Fusion
    Navigation System Using the MEMS-based IMU and the Global Position System Device,” IEEE Microsystems, Packaging, Assembly & Circuits Technology Conference, pp. 149-152, Oct. 2008.
    [30] Ben-Jye Chang, Bo-Jhang Huang, and Ying-Hsin Liang; “Wireless Sensor
    Network-Based Adaptive Vehicle Navigation in Multihop-Relay WiMAX Networks,” IEEE 22nd International Conference on Advanced Information Networking and Applications, pp. 56-63, March 2008.
    口試委員
  • 謝錫堃 - 召集委員
  • 吳承崧 - 委員
  • 童曉儒 - 委員
  • 黃文祥 - 委員
  • 許蒼嶺 - 指導教授
  • 口試日期 2009-09-08 繳交日期 2009-09-11

    [回到前頁查詢結果 | 重新搜尋]


    如有任何問題請與論文審查小組聯繫