Responsive image
博碩士論文 etd-1009112-135736 詳細資訊
Title page for etd-1009112-135736
論文名稱
Title
雙併式降壓轉換器之PWM/PFM混合調變控制器
PWM/PFM Mixed Modulation Controller for Twin-Buck Converter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-09-10
繳交日期
Date of Submission
2012-10-09
關鍵字
Keywords
雙併式降壓轉換器、增益規劃、線性二次調節器、穩壓控制、柔性切換轉換器
twin-buck converter, gain scheduling, LQR, PWM/PFM modulation, output voltage regulation, zero-voltage-transition, zero-current-transition
統計
Statistics
本論文已被瀏覽 5729 次,被下載 724
The thesis/dissertation has been browsed 5729 times, has been downloaded 724 times.
中文摘要
本文運用狀態空間平均法對具有柔性切換之雙併式降壓轉換器進行模型分析並推導其平均線性動態態方程式,再以此為模型應用一可變動操作點之線性二次調節器 (Linear Quadratic Regulator, LQR) 設計一最佳化控制器。

雙併式降壓轉換器的調變方式是 PFM(Pulse-Frequency Modulation) ,且因為雙併式降壓轉換器的柔性切換特性,其開關有諸多限制使得在此種調變方式下降壓比,也就是控制力,無法小於 0.5 。為了擴展轉換器的控制力範圍,本文以 PWM/PFM 混合調變的方式調變雙併式降壓轉換器,同時,為了使同步開關達到零電流截止,需計算同步開關的放電時間,供控制器回授使用。本文最後以 MATLAB 模擬與撰寫 Verilog 硬體描述語言經 FPGA (Field Programmable Gate Array) 實現驗證此控制器與調變方式的可行性。
Abstract
In the thesis, we apply the state average method to model the time-average linear dynamic equation, which is used to design a gain scheduled linear quadratic optimal controller. Because the standard modulation method of the twin-buck converter is PFM(Pulse-Frequency Modulation) and twin-buck converter owns the soft-switching characteristic, the voltage step-down ratio, that is, control force can not be lowered less than 0.5. For expanding the range of control force of converter, we modulate the converter by means of
mixed modulation of PWM/PFM. With the former odulation method, we have to calculate the discharging time of synchronous switch taken by controller to achieve zero-voltage-transition (ZVT).

In the last part of this thesis, we verify the practicability of the controller and modulation method through soft simulation coded by MATLAB and hardware implementation of FPGA driven by Verilog.
目次 Table of Contents
目錄
中文摘要ii
英文摘要iii
圖目錄vi
表目錄ix
第1章研究主題之背景與目的 1
1.1研究背景、動機與目的 . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 建立轉換器數學模型的方法 . . . . . . . . . . . . . . . . . . . 5
1.2.2 降壓式轉換器之調變模式. . . . . . . . . . . . . . . . . . . . 8
1.2.3 直流對直流轉換器控制器設計法回顧 . . . . . . . . . . . . . . 8
1.3 論文大綱與貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
第2章雙併式降壓轉換器11
2.1 直流對直流降壓轉換器. . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 基本降壓轉換器. . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 交錯式轉換器. . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 同步整流降壓轉換器. . . . . . . . . . . . . . . . . . . . . . . 15
2.1.4 具同步整流之雙併式降壓轉換器. . . . . . . . . . . . . . . . 16
2.1.5 結合基本降壓轉換器操作之雙併式降壓轉換器. . . . . . . . . 18
2.2 結合基本降壓轉換器操作之雙併式降壓電源轉換器之數學模型分析 . 19
2.2.1 狀態空間分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 狀態空間平均法 . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.3 同步開關之零電流截止時間計算 . . . . . . . . . . . . . . . . 23
第3章應用LQR方法之適應控制器設計27
3.1 控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.1 增益規劃. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 LQR 控制器設計. . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 雙併式降壓轉換器之控制器設計. . . . . . . . . . . . . . . . 31
3.2 雙併式降壓轉換器控制器模擬 . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 控制系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
第4章控制器之實現與實驗結果42
4.1 雙併式降壓轉換器硬體架構介紹 . . . . . . . . . . . . . . . . . . . . 42
4.2 實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
第5章結論與未來展望48
5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
參考文獻49
附錄53
A.1 雙併式降壓轉換器實驗電路 . . . . . . . . . . . . . . . . . . . . . . . 53
參考文獻 References
[1] K. J. Åström and B. Wittenmark, Adaptive control. Addison-Wesley, 1995.
[2] 隋杰, 雙併式降壓轉換器穩壓控制. 國立中山大學電機工程學系碩士論文, 民國100年.
[3] W. Tang, “A new control method for synchronous-switch post regulator,” Power
Electronics Specialists Conference, vol. 1, pp. 408–411 vol.1, 2000.
[4] 陳妤甄, 雙併式降壓轉換器. 國立中山大學電機工程學系碩士論文, 民國98年.
[5] C. S. Moo, Y. J. Chen, H. L. Cheng, and Y. C. Hsieh, “Twin-buck converter with
zero-voltage-transition,” IEEE Transactions on Industrial Electronics, no. 99,
pp. 2366 – 2371, 2009.
[6] Y. C. Hsieh, Y. J. Chen, C. S. Moo, and H. L. Cheng, “An interleaved twinbuck
converter with zero-voltage-transition,” Industrial Technology, pp. 1 – 5,
2009.
[7] 陳柏雄, 雙併式降壓轉換器之資料取樣LQ最佳控制器. 國立中山大學電機工程學系碩士論文, 民國100年.
[8] C. C. Fang and E. Abed, “Output regulation of DC-DC switching converters
using discrete-time integral control,” American Control Conference, vol. 2,
pp. 1052–1056, 1999.
[9] S. Almér, U. Jönsson, C. Y. Kao, and J. Mari, “Global stability analysis of DCDC
converters using sampled-data modeling,” American Control Conference,
vol. 5, pp. 4549–4554, 2004.
[10] A. J. Fossard, M. Clique, J. G. Ferrante, and A. Capel, “A general linear continuous
model for design of power conditioning units at fixed and free running
frequency,” IEEE PESC, pp. 113 – 124, 1977.
[11] M. Hissem and A. Cheriti, “Application of the current-injected modeling approach
to quasi-resonant converters,” IEEE Transactions on Power Electronics,
vol. 12, pp. 695 – 703, 1997.
[12] A. S. Kislovski, R. Redl, and N. O. Sokal, Dynamic Analysis of Switching-Mode
DC-DC Converters. Van Nostrand Reinhold, 1991.
[13] A. Kislovski and R. Redl, “Generalization of the injected-absorbed-current dynamics
analysis method of DC-DC switching power cells,” IEEE International
Symposium on, vol. 4, pp. 1895–1898, 1992.
[14] G. W. Wester and R. D. Middlebrook, “Low frequency characterization of
switched DC-DC converters,” IEEE PESC Record, pp. 376 – 385, 1972.
[15] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics.
Springer, 2001.
[16] R. D. Middlebrook, “Small-signal modeling of pulse-width modulated switchedmode
power converters,” IEEE, vol. 76, pp. 343–354, 1988.
[17] M. Tajuddin, N. Rahim, I. Daut, B. Ismail, and M. Mohammed, “State space
averaging technique of power converter with digital PID controller,” TENCON
2009 - 2009 IEEE Region 10 Conference, pp. 1–6, 2009.
[18] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, “Averaged
modeling of PWM converters operating in discontinuous conduction mode,”
Power Electronics, vol. 16, pp. 482–492, 2001.
[19] D. Maksimovic and S. Cuk, “A unified analysis of PWM converters in discontinuous
modes,” IEEE Transactions on Power Electronics, vol. 6, pp. 476–490,
1991.
[20] W. R. Liou, M. L. Yeh, and Y. L. Kuo, “A high efficiency dual-mode buck
converter IC for portable applications,” Power Electronics, vol. 23, pp. 667–
677, 2008.
[21] J. Xiao, A. Peterchev, J. Zhang, and S. Sanders, “An ultra-low-power digitallycontrolled
buck converter IC for cellular phone applications,” Applied Power
Electronics Conference and Exposition, vol. 1, pp. 383–391, 2004.
[22] A. Morra, M. Piselli, M. Flaibani, and A. Gola, “A buck converter operating
in PFM mode, mathematical model and simulation analysis,” in International
Telecommunications Energy Conference, pp. 23–26, IEEE, 2007.
[23] A. Morra, M. Piselli, and A. Gola, “PFM mode buck converter: A mathematical
model to calculate the maximum switching frequency,” Electronics, Circuits and
Systems, pp. 926–929, 2008.
[24] D. W. Hart, Power electronics. McGraw-Hill, 2010.
[25] Y. T. Chen and C. H. Chen, “A DC-DC buck converter chip with integrated
PWM/PFM hybrid-node control circuit,” Power Electronics and Drive Systems,
pp. 181–186, 2009.
[26] H. F. Leung, K. S. Tam, and C. K. Li, “An improved LQR-based controller for
switching DC-DC converters,” IEEE Transactions on Industrial Electronics,
vol. 40, no. 5, pp. 521–528, 1993.
[27] M. Poodeh, S. Eshtehardiha, and M. Namnabat, “Optimized state controller
on DC-DC converter,” Power Electronics, pp. 153–158, 2007.
[28] Q. He and Y. Zhao, “The design of controller of buck converter,” Computer
application and system modeling, vol. 15, pp. 251–255, 2010.
[29] J. Geng, C. Zhang, and C. Luo, “Research of a PWM-based new slidingmode
controller for the buck converter,” Industrial Electronics and Applications,
pp. 1907–1911, 2007.
[30] W. J. Rugh and J. S. Shamma, “Research on gain scheduling,” Automatica,
vol. 36, pp. 1401–1425, 2000.
[31] D. J. Leith, “Survey of gain-scheduling analysis & design,” International Journal
of Control, vol. 73, pp. 1001–1025, 2000.
[32] I. D. Landau, Adaptive Control: Algorithms, Analysis and Applications.
Springer, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code