Responsive image
博碩士論文 etd-1009112-155250 詳細資訊
Title page for etd-1009112-155250
論文名稱
Title
以離子液體作為電解液之有機自由基高分子正極在有機自由基電池的電化學行為
Electrochemical behavior of organic radical polymer cathodes in organic radical batteries with ionic liquid electrolytes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-10-03
繳交日期
Date of Submission
2012-10-09
關鍵字
Keywords
氮氧自由基高分子、離子液體、有機自由基電池、正極、鋰離子電池
Nitroxide polymer, Ionic liquid, Organic radical batteries, Cathode, Lithium-ion batteries
統計
Statistics
本論文已被瀏覽 5693 次,被下載 525
The thesis/dissertation has been browsed 5693 times, has been downloaded 525 times.
中文摘要
本篇論文主要探討lithium bis(trifluoromethylsulfonyl)imide /N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (LiTFSI/BMPTFSI) 作為電解液時,以poly(2,2,6,6-tetramethylpiperidin- 1-oxyl-4-yl methacrylate) (PTMA) 作為正極時之有機自由基電池在電化學上之行為。高濃度lithium bis(trifluoromethylsulfonyl)imide (LiTFSI)之離子液體電解液具有高極性,可有效防止黏著劑和PTMA溶解在電解液中。從循環伏安法和交流阻抗法測試結果顯示,提高LiTFSI在電解液中的濃度,能明顯降低電池內部阻抗,也影響電池在充放電測試上之表現。接著以PTMA複合電極作為正極,在0.6 m LiTFSI/BMPTFSI作為電解液時,其放電電容量在1 C的充放電速率為92.9 mAh g−1, 100 C之放電電容量與1 C相較下,仍保有1 C時放電電容量的88.3%。此外,在電池循環效能測試中,0.6 m LiTFSI/BMPTFSI作為電解液時,
電池在循環壽命上有較佳的表現。
Abstract
The electrochemical behavior of a poly(2,2,6,6-tetramethylpiperidin- 1-oxyl-4-yl methacrylate) (PTMA) cathode in organic radical batteries with lithium bis(trifluoromethylsulfonyl)imide in N-butyl-N-methyl- pyrrolidinium bis(trifluoromethylsulfonyl)imide (LiTFSI/BMPTFSI) ionic liquid electrolytes is investigated. The ionic liquid electrolytes containing a high concentration of the LiTFSI salt have a high polarity, preventing the dissolution of the polyvinylidene fluoride (PVdF) binder and PTMA in the electrolytes. The results of cyclic voltammetry and AC impedance indicate that an increase in the LiTFSI concentration results in a decrease in the impedance of the lithium electrode, which affects the C-rate performance of batteries. The discharge capacity of the PTMA composite electrode in a 0.6 m LiTFSI/BMPTFSI electrolyte is 92.9 mAh g−1 at 1 C; its C-rate performance exhibits a capacity retention, 100 C/1 C, of 88.3%. Moreover, the battery with the 0.6-m LiTFSI/BMPTFSI electrolyte has very good cycle-life performance.
目次 Table of Contents
摘 要...........................................................................................................................i
Abstract ........................................................................................................................... ii
目錄 ............................................................................................................................... iii
圖目 錄 ......................................................................................................................... vi
表目 錄 .......................................................................................................................... x
第一章緒 論 ................................................................................................................ 1
1-1 前言 ......................................................................................................................... 2
1-2 鋰離子電池工作原理 ............................................................................................... 2
1-3 有機自由基電池 ....................................................................................................... 3
1-4 氮氧自由基高分子簡介 ........................................................................................... 4
1-5 電解液 ........................................................................................................................ 6
1-6 離子液體簡介 ........................................................................................................... 7
1-7 研究動機 .................................................................................................................. 11
參考文獻 ........................................................................................................................ 12
第二章 實驗藥品與儀器 ............................................................................................ 14
2-1 實驗藥品與材料 ................................................................................................... 15
2-2 實驗儀器 ............................................................................................................... 17
2-2-1 極片裁切機............................................................................................. 17
2-2-2 電池封裝機............................................................................................. 17
2-2-3 傅立葉轉換紅外線光譜儀..................................................................... 17
2-2-4 紫外光/可見光光譜儀 ........................................................................... 17
2-2-5 膠體滲透層析儀..................................................................................... 18
2-2-6 電子順磁共振儀..................................................................................... 18
2-2-7 熱重分析儀............................................................................................. 19
2-2-8 電化學分析儀......................................................................................... 19
2-2-9 電池功能測試系統................................................................................. 20
2-2-10 場發射型掃描式電子顯微鏡 .............................................................. 20
第三章 實驗流程 ........................................................................................................ 21
3-1 PTMA 的合成 ....................................................................................................... 22
3-2 製備 PTMA 複合電極 ......................................................................................... 23
3-3 LiTFSI/BMPTFSI 離子液體電解液配製 ........................................................... 23
3-4 製備溶解度測試之樣品 ....................................................................................... 24
3-5 半電池組裝 ........................................................................................................... 25
3-6 電化學性質測試 ................................................................................................... 26
3-6-1 離子導電度量測 ........................................................................................ 26
3-6-2 線性掃描伏安法 ........................................................................................ 27
3-6-3 循環伏安法 ................................................................................................ 27
3-6-4 交流阻抗法 ................................................................................................ 28
3-6-5 充放電性能測試 ........................................................................................ 28
3-6-6 循環效能測試 ............................................................................................ 29
參考文獻 ........................................................................................................................ 29
第四章結果與討論 ...................................................................................................... 30
4-1 正極活物 PTMA 之材料分析 ............................................................................ 31
4-1-1 正極活物PTMA 分子量測定 ................................................................... 31
4-1-2 紅外線光譜儀圖譜分析 ............................................................................ 31
4-1-3 電子順磁共振圖譜分析 ............................................................................ 34
4-1-4 紫外光/可見光光譜儀分析 ....................................................................... 36
4-2 電解液性質分析 ................................................................................................... 36
4-2-1 熱重分析圖 ................................................................................................ 37
4-2-2 離子導電度量測 ........................................................................................ 39
4-2-3 溶解度測試 ................................................................................................ 41
4-3 電解液之電化學穩定性測試 ............................................................................... 44
4-3-1 線性掃描伏安法分析 ................................................................................ 44
4-3-2 循環伏安法分析 ........................................................................................ 45
4-3-3 交流阻抗法分析 ........................................................................................ 48
4-4 電池系統效能測試 ............................................................................................... 51
4-4-1 循環伏安法分析 ......................................................................................... 51
4-4-2 充放電性能測試 ......................................................................................... 53
4-4-3 交流阻抗法分析 ......................................................................................... 56
4-4-4 循環效能測試 ............................................................................................ 57
4-4-5 PTMA 複合電極表面觀察 ......................................................................... 59
參考文獻 ........................................................................................................................ 61
第五章結 論 .............................................................................................................. 63
5-1 總 結 ................................................................................................................... 64
第六章附 錄 .............................................................................................................. 65
參考文獻 References
第一章
[1] H. Nishide, K. Koshika, K. Oyaizu, Pure Appl. Chem. 2009, 81, 1961.
[2] H. Nishide, T. Suga, Electrochem. Soc. Interface, 2005, 14, 32.
[3] D. I. Williams, J. J. Byrne, J. S. Driscoll, J. Electrochem. Soc. 1969,
116, 2.
[4] T. Ohzuku, H. Wakamatsu, Z. Takehara, S. Yoshizawa, Electrochim.
Acta, 1979, 24, 723.
[5] S. Tobishima, J. Yamaki, A. Yamaji, J. Electrochem. Soc. 1984, 131,
57.
[6] P. Poizot, F. Dolhem, Energy Environ. Sci. 2011, 4, 2003.
[7] K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro,
E. Hasegawa, Chem. Phys. Lett. 2002, 359, 351.
[8] H. Nishide, S. Iwasa, Y.-J. Pu, T. Suga, K. Nakahara, M. Satoh,
Electrochim. Acta, 2004, 50, 827.
[9] J. Kim, G. Cheruvally, J. W. Cho, J. H. Ahn, D. S. Choi, C. E. Song,
J. Electrochem. Soc. 2007, 154, A839.
[10] H. Li, Y. Zou, Y. Xia, Electrochim. Acta, 2007, 52, 2153.
[11] S. Komaba, T. Tanaka, T. Ozeki, T. Taki, H. Watanabe, H. Tachikawa,
J. Power Sources, 2010, 195, 6212.
[12] H. Nishide, K. Oyaizu, Science, 2008, 319, 737.
[13] Y. Liang, Z. Tao, J. Chen, Adv. Energy Mater. 2012, 2, 742.
[14] 黃可龍, 王兆翔, 劉素琴, 馬振基“鋰離子電池 原理與技術”,
13
五南出版社, (2010)
[15] P. Walden, Bull. Acad. Imper. Sci. (St. Petersburg), 1914, 1800.
[16] F. H. Hurley, T. P. Wier, J. Electrochem. Soc. 1951, 98, 203.
[17] H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryong, J. Am. Chem.
Soc. 1975, 97, 3264.
[18] J. S. Wilkes, M. J. Zaworotko, J. Chem. Soc., Chem. Commun. 1992,
965.
[19] J. H. Davis, P. A. Fox, Chem. Commun. 2003, 1209.
[20] 吳宇平, 戴曉兵, 馬軍旗, 程預江 “鋰離子電池-應用與實踐”, 北
京化學工 業出版社, (2004)
[21] Enabling Technologies: Ionic Liquids. Chem.Files Vol. 5, No. 6.
[22] T. Suga, H. Ohshiro, S. Sugita, K. Oyaizu, H. Nishide, Adv. Mater.
2009, 21, 1627.
[23] K. Oyaizu, T. Kawamoto, T. Suga, H. Nishide, Macromolecules, 2010,
43, 10382.
[24] T. Suga, S. Sugita, H. Ohshiro, K. Oyaizu, H. Nishide, Adv. Mater.
2011, 23, 751.
[25] H.C. Lin, C.C. Li, J. T. Lee, J. Power Sources, 2011, 196, 8098.
[26] Y. Dai, Y. Zhang, L. Gao, G. Xu, J. Xie, J. Electrochem. Soc. 2011,
158, A291.
第三章
[1] K. Nakahara, S. Iwasa, M. Satoh, Y. Morioka, J. Iriyama, M. Suguro,
E. Hasegawa. Chem. Phys. Lett. 2002, 359, 351.
第四章
[1] (a) H. Nishide, K. Koshika, K. Oyaizu, Pure Appl. Chem. 2009, 81,
1961.
(b) T. Endo, K. Takuma, T. Takata, C. Hirose, Macromolecules, 1993,
26, 3227.
[2] Y. Dai, Y. Zhang, L. Gao, G. Xu, J. Xie, J. Electrochem. Soc. 2011,
158, A291.
[3] T. Katsumata, J. Qu, M. Shiotsuki, M. Satoh, J. Wada, J. Igarashi, K.
Mizoguchi, T. Masuda, Macromolecules, 2008, 41, 1175.
[4] L. Bugnon, C. J. H. Morton, P. Novak, J. Vetter, P. Nesvadba, Chem.
Mater. 2007, 19, 2910.
[5] C. Arbizzani, G. Gabrielli, M. Mastragostino, J. Power Sources, 2011,
196, 4801.
[6] Y. S. Yun, J. H. Kim, S. Y. Lee, E. G. Shim, D. W. Kim, J. Power
Sources, 2011, 196, 6750.
[7] T. Frömling, M. Kunze, M. Schönhoff, J. Sundermeyer, B. Roling, J.
Phys. Chem. B, 2008, 112, 12985.
[8] H. Tokuda, S. Tsuzuki, M. A. B. H. Susan, K. Hayamizu, M. Watanabe,
J. Phys. Chem. B, 2006, 110, 19593-19600.
[9] L. Damen, M. Lazzari, M. Mastragostino, J. Power Source, 2011, 196,
8692.
[10] K. Xu, Chem. Rev. 2004, 104, 4303.
62
[11] M. Ue, M. Takeda, M. Takehara, S. Mori, J. Electrochem. Soc. 1997,
144, 2684.
[12] A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, H. Ohno, J. Power
Sources, 2007, 174, 342.
[13] C. Sirisopanaporn, A. Fernicola, B. Scrosati, J. Power Sources, 2009,
186, 490.
[14] M. Nádherná, J. Reiter, J. Moškon, R. Dominko, J. Power Sources,
2011, 196, 7700.
[15] A. Guerfi, S. Duchesne, Y. Kobayashi, A. Vijh, K. Zaghib, J. Power
Sources, 2008, 175, 866.
[16] B. Garcia, S. Lavallée, G. Perron, C. Michot, M. Armand, Electrochim.
Acta, 2004, 49, 4583.
[17] J. Qu, T. Katsumata, M. Satoh, J. Wada, J. Igarashi, K. Mizoguchi, T.
Masuda, Chem. Eur. J. 2007, 13, 7965.
第六章
[1] P. C. Howlett, N. Brack, A. F. Hollenkamp, M. Forsyth, D. R.
MacFarlane, J. Electrochem. Soc. 2006, 153, A595.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code