Responsive image
博碩士論文 etd-1018111-165442 詳細資訊
Title page for etd-1018111-165442
論文名稱
Title
無線通訊應用之變壓器形式積體化被動元件與雙頻帶通濾波器研究與設計
Study and Design of Transformer-Based Integrated Passive Devices and Dual-Band Bandpass Filters for Wireless Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-10-01
繳交日期
Date of Submission
2011-10-18
關鍵字
Keywords
等效電路、模型化、雙頻帶通濾波器、平面型變壓器、積體化被動元件
Modeling, Equivalent Circuit, Dual-Band Bandpass Filter, Planar Transformer, Integrated Passive Device
統計
Statistics
本論文已被瀏覽 5754 次,被下載 1902
The thesis/dissertation has been browsed 5754 times, has been downloaded 1902 times.
中文摘要
本研究在利用具競爭優勢之先進積體化被動元件製程技術
,發展出各種創新三維結構之微型化高性能射頻被動元件設計,包括高品質因素、高效率平面型變壓器以及可廣泛應用於無線通訊射頻前端之巴倫器、帶通濾波器與功率結合器等,並且建立所設計被動元件之寬頻等效電路模型。論文中藉由以平面型變壓器為基礎元件所設計之一系列之無線通訊射頻前端元件,並利用具物理意義之等效電路模型,可針對不同之整合式被動元件建立其寬頻等效電路。此外本論文亦深入研究分析以此等效電路模型,進而設計及預測馬遜巴倫器之頻率響應及電氣特性。論文第二部份則為了實現以高效率及高密度繞線之平面型變壓器為基礎
,使用整合式被動元件之製程設計出微型化且具有傳輸零點及高選擇度之耦合帶通濾波器,並發展其等效電路模型及分析其傳輸零點之控制,模型化與量測結果呈現相當吻合。第三部份利用螺旋狀諧振器設計三階耦合雙頻帶通濾波器實現於有機基板上,除驗證了使用諧振器耦合的方式設計濾波器以解決元件非理想的寄生效應問題,且具縮小化及較高的設計自由度以達最佳化的設計。所論文提出之雙頻帶通濾波器設計在實作與模擬上皆具良好的吻合度。
Abstract
This dissertation aims to design and implement
wireless passive components using domestic integrated passive device (IPD) technology. The research focuses on exploiting novel 3-D structures for various kinds of IPD-based wireless passive
components including high-quality and high-efficiency planar transformers, baluns, filters, and combiners to achieve miniature size and high performance. A
physical model has been developed for modeling the planar transformers. In this dissertation, a scalable transformer model in integrated passive device technology is further used to correlate with the coupled-line sections of a conventional Marchand balun. This improves the efficiency of the design of planar transformers with equivalent coupled-line parameters such as the coupling factor, and even- and odd-mode characteristic impedances and quality factors. Additionally, the proposed model-based
design approach provides effective optimization techniques that incorporate geometrical and material parameters. In addition, a compact transformer-based
coupled balun bandpass filter design is proposed based on integrated circuit technology and the equivalent circuit is established. Using a planar transformer with high-density fully symmetrical wiring not only greatly reduces the component size but also provides a superior stopband rejection and selectivity. Finally, by using the spiral-shaped resonators, the dual-band third-order bandpass filter has been implemented on organic substrates. The proposed BPF design is verified to overcome the elements’ parasitic effects, and thus can be miniaturized and optimized with high degree of freedom. The simulation and measurement results have good agreement for
the proposed design in this dissertation.
目次 Table of Contents
1 Introduction 1
1.1 Research Motivation 1
1.2 Integrated Passive Devices 2
1.2.1 IPDs Concept on Wafer Level Package 2
1.2.2 Technology Realization of IPDs 3
1.3 Overview of Dissertation 7
2 Design and Modeling of Planar Transformer-Based Silicon Integrated Passive Devices for Wireless Applications 10
2.1 Planar Transformer Winding and Physical Modeling 11
2.2 Implementation of Transformer-Based Integrated Passive Devices 20
2.2.1 Planar Transformer-based Balun 20
2.2.2 Transformer-based Coupled Bandpass Filter 26
2.2.3 Planar Transformer-based Power Combiner 29
3 Optimum Design of Transformer-Type Marchand Balun Using Scalable Integrated Passive Device Technology 37
3.1 Planar Transformer-Type Marchand Balun Design 38
3.1.1 IPD Balun Structure 38
3.1.2 Marchand Balun Design with a Symmetric Transformer Model 40
3.1.3 Transformer Model with Scalability 47
3.2 Design Optimization and Results 49
3.2.1 Marchand Balun in Silicon IPD Technology 52
3.2.2 Marchand Balun in Glass IPD Technology 57
4 Design and Analysis of Compact Bandpass Filter Using Transformer-Based Coupled Resonators on Integrated Passive Device Glass Substrate 63
4.1 Filter Design Approach and Transmission Zero Analysis 65
4.1.1 Design of Transformer-based Coupled Resonator Bandpass Filter 65
4.1.2 Transmission-Zero Analysis of Filter 68
4.1.3 Design Examples 76
4.2 Experimental Results and Discussions 77
5 A Novel Compact Dual-Band Bandpass Microstrip Filter Using Spiral-Shaped Resonators 81
5.1 Spiral-Shaped Microstrip Resonator Configuration 82
5.1.1 Spiral-Shaped Microstrip Resonator 82
5.1.2 Third-Order Chebyshev Filter Prototype 84
5.1.3 Transmission Zeros 87
5.2 Measurement Results and Discussions 88
6 Conclusions 95
Bibliography 97

Vita 107

參考文獻 References
[1] J. N. Burghartz, M. Soyuer, and K. A. Jenkins, “Integrated RF and microwave components in BiCMOS technology,” IEEE Trans. Electron Devices, vol. 43, no. 9, pp. 1559–1570, Sept. 1996.
[2] A. M. Niknejad and R. G. Meyer, “Analysis, design, and optimization of spiral inductors and transformers for Si RF IC's,” IEEE J. Solid-State Circuits, vol. 33, no. 10, pp. 1470–1481, Oct. 1998.
[3] J. B. Yoon, B. K. Kim, C. H. Han, E. Yoon, and C. K. Kim, “Surface micromachined solenoid on-Si and on-glass inductors for RF applications,” IEEE Electron Device Lett., vol. 20, no. 9, pp. 487–489, Sep. 1999.
[4] C. S. Lin, Y. K. Fang, S. F. Chen, C. Y. Lin, M. C. Hsieh, C. M. Lai, T. H. Chou, and C. H. Chen, “A deep submicrometer CMOS process compatible high-Q air-gap solenoid inductor with laterally laid structure,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 160–162, Mar. 2005.
[5] A. Sutono, D. Heo, Y.-J. E. Chen, and J. Laskar, “High-Q LTCC-based passive library for wireless system-on-package (SOP) module development,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 10, pp. 1715–1724, Oct. 2001.
[6] M. F. Shafique, K. Saeed, D. P. Steenson, and I. D. Robertson, “Laser Prototyping of Microwave Circuits in LTCC Technology,” IEEE Trans. Microwave Theory and Tech., vol. 57, no. 12, pp. 3254–3261, Dec. 2009.
[7] Y. S. Tsai, C. H. Huang, C. T. Chiu, T. S. Horng, and C. P. Hung, “A simple transmission-line model to distinguish the Q-factor responses among various kinds of integrated inductors,” in Proc. IEEE Electron. Comp. Technol. Conf., 2007, pp. 1252-1255.
[8] A. C. Kundu, M. Megahed, D. Schmidt, “Comparison and analysis of integrated passive device technologies for wireless radio frequency module,” in Proc. IEEE Electron. Comp. Technol. Conf., 2008, pp. 683-687.
[9] K. Chong, Y. H. Xie, K. W. Yu, D. Huang, and M. C. F. Chang, “High-performance inductors integrated on porous silicon,” IEEE Electron Device Lett., vol. 26, no. 2, pp. 93-95, Feb. 2005.
[10] M. Spirito, F. M. D. Paola, L. K. Nanver, E. Valletta, B. Rong, B. Rejaei, L. C. N. de Vreede, and J. N. Burghartz, “Surface-passivated high-resistivity silicon as a true microwave substrate,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 7, pp. 2340–2347, July 2005.
[11] J. P. Dougherty, “Integrated passives technology and economics,” Circuits Assem., pp. 18–23, Sept. 2003.
[12] C. Wang, W. S. Lee, and N. Y. Kim, “Cost-effective high-yield manufacturing process of integrated passive devices (IPDs) for RF and microwave application,” in IEEE MTT-S Int. Microwave Symp. Dig., 2010, pp. 397-400.
[13] T. Ulrich and L. Schaper, Integrated Passive Component Technology, New York: IEEE Press/Wiley, 2003.
[14] I. H. Jeong, K. J. Kim, T. O. Kong, I. S. Kim, D. W. Kim, and Y. S. Kwon, “High-performance RF integrated passive devices on thick oxide substrate using Cu-BCB process,” Micro. Opt. Tech. Lett., vol. 37, no. 1, pp. 49-52, Feb. 2003.
[15] R. Raghavendra, P. Bellew, N. Mcloughlin, G. Stojanovic, M. Damnjanovic, V. Desnica, and L. Zivanov, “Characterization of novel varistor+inductor integrated passive devices,” IEEE Electron Device Lett., vol. 25, no. 12, pp. 778–780, Dec. 2004.
[16] R. Wang , R. Lou, K. Cheng, L. Leung, J.-R. Lin, and T. Chung, “A compact 802.11b/g WLAN front-end module with integrated passive devices on modified ceramic substrate,” in Proc. Asia-Pacific Microw. Conf., 2009, pp. 1489-1492.
[17] J.-I. Yu, J.-M. Yook, J.-C. Park, C.-H Kim, and Y.-S. Kwon, “Compact front end modules for WLAN applications with integrated passive devices using selectively anodized aluminum substrate,” in Proc. Eur. Microw. Conf., 2010, pp. 329-332.
[18] R. E. Jones, C. Ramiah, T. Kamgaing, S. K. Banerjee, C.-T. Tsai, H. G. Hughes, A. P. De Silva, J. Drye, L. Li, W. Blood, Q. Li, C. R. Vaughan, R. Miglore, D. Penunuri, R. Lucero, D. R. Frear, and M. F. Miller, “System-in-a-Package integration of SAW RF Rx filter stacked on a transceiver chip,” IEEE Trans. Adv. Packag., vol. 28, no. 2, pp. 310–319, May. 2005.
[19] K. Liu, R. Emigh, and R. C Frye, “Small form-factor integrated balun with complex impedance matching,” in IEEE MTT-S Int. Microwave Symp. Dig., 2008, pp. 1239-1242.
[20] K. Liu, R. C Frye, and B. Ahn, “High rejection BPF for WiMAX applications from silicon integrated passive device technology,” in IEEE MTT-S Int. Microwave Symp. Dig., 2010, pp. 1364-1367.
[21] H.-T. Kim, K. Liu, R. C. Frye, Y.-T. Lee, G. Kim, and B. Ahn, “Design of compact power divider using integrated passive device (IPD) technology,” in Proc. IEEE Electron. Comp. Technol. Conf., 2009, pp. 1894-1899.
[22] A. Y. T. Lee, K. Liu, R. Frye, H. T. Kim, G. Kim, and B. Ahn, “High rejection low-pass-filter design using integrated passive device technology for chip-scale module package,” in Proc. IEEE Electron. Comp. Technol. Conf., 2010, pp. 2025-2030.
[23] X. Huo, K. Chen, and P. Chan, “A Silicon based high Q inductors incorporating electroplated copper and low-k BCB dielectric,” IEEE Electron Device Lett., vol. 23, no. 9, pp. 520–522, Sep. 2002.
[24] K. Zoschke, M. J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Kaletta, F. Schmiickle, and H. Reichl, “Fabrication of application specific integrated passive devices using wafer level packaging technologies,” IEEE Trans. Adv. Packag., vol. 30, no. 3, pp. 359-368, Aug. 2007.
[25] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[26] V. A. Solomko and P. Weger, “A fully integrated 3.3–3.8-GHz power amplifier with autotransformer balun,” IEEE Trans. Microwave Theory and Tech., vol. 57, no. 9, pp. 2160–2172, Sept. 2009.
[27] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. Parts, Hybrids, Packag., vol. PHP-10, pp. 101–109, Jun. 1974.
[28] F. W. Grover, Inductance Calculations. Princeton, NJ:Van Nostrand, 1946.
[29] H. A. Wheeler, “Formulas for the skin effect,” in Proc. IRE., vol. 30, Sept. 1942, pp. 412–424.
[30] L. Wiemer and R. H. Jansen, “Determination of coupling capacitance of underpasses, air bridges and crossings in MICs and MMICs,” Electron. Lett., vol. 23, pp. 344–346, Mar. 1987.
[31] C. P. Yue and S. S. Wong, “Physical modeling of spiral inductors on silicon,” IEEE Trans. Electron Devices., vol. 47, no. 3, pp. 560-568, Mar. 2000.
[32] D. Kehrer, W. Simbürger, H.D. Wohlmuth and A. L. Scholtz, “Modeling of monolithic lumped planar transformers up to 20 GHz,” in Proc. Custom Integrated Circuits Conf., 2001, pp. 401-404.
[33] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer - A new power-combining and impedance-transformation technique,” IEEE Trans. Microwave Theory and Tech., vol. 50, no. 1, pp. 316-331, Jan. 2002.
[34] R. C. Frye, G. Badakere, Y. Lin, and P. Chelvam, “A monolithic, compact balun/matching network for SiP applications,” in Proc. 13th IEEE Topical Elect. Performance of Electron. Packag. Meeting, 2004, pp. 37-40.
[35] N. Marchand, “Transmission line conversion transformers,” Electronics, vol. 17, no. 12, pp. 142-145, Dec. 1944.
[36] C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microwave Theory and Tech., vol. 55, no. 6, pp. 1190–1199, Jun. 2007.
[37] W. R. Eisenstadt, B. Stengel, and B. M. Thompson, Microwave Differential Circuit Design Using Mixed-Mode S-parameters, Norwood: Artech House, 2006.
[38] S.-C. Tseng, C. Meng, C.-H. Chang, C.-K. Wu, and G.-W. Huang, “Monolithic broadband Gilbert micromixer with an integrated Marchand balun using standard silicon IC process,” IEEE Trans. Microwave Theory and Tech., vol. 54, no. 12, pp. 4362–4371, Dec. 2006.
[39] K. Liu, R. Frye, and R. Emigh, “Band-pass-filter with balun function from IPD technology,” in Proc. IEEE Electron. Comp. Technol. Conf., 2008, pp. 718-723.
[40] G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Norwood: Artech House, 1980.
[41] C. M. Tsai, H. M. Lee, and C. C. Tsai, “Planar filter design with fully controllable second passband,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 11, pp. 3429–3439, Nov. 2005.
[42] J. L. B. Walker, D. P. Myer, F. H. Raab, and C. Trask, Classic Works In RF Engineering: Combiners, Couplers, Transformers, and Magnetic Materials, Norwood: Artech House, 2006.
[43] P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, A. M. Niknejad, “ A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1054–1063, May 2008.
[44] P. Haldi, G. Liu, and A. M. Niknejad, “CMOS compatible transformer power combiner,” Electron. Lett., vol. 42, no. 19, pp. 1091-1092, Sep. 2006.
[45] K. H. An, O. Lee, H. Kim, D. H. Lee, J. Han, K. S. Yang, Y. Kim, J. J. Chang, W. Woo, C.-H. Lee, H. Kim, and J. Laskar, “Power-combining transformer techniques for fully-integrated CMOS power amplifier,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1064–1075, May 2008.
[46] T. Chen, K. W. Chang, S. B. Bui, H. Wang, G. Samuel, L. C. T. Lui, T. S. Lin, and W. S. Titus, “Broadband monolithic passive Baluns and monolithic double-balanced mixer,” IEEE Trans. Microwave Theory and Tech., vol. 39, pp. 1980-1986, Dec. 1991.
[47] P. C. Hsu, C. Nguyen, and M. Kintis, “Uniplanar broad-band push-pull FET amplifiers,” IEEE Trans. Microwave Theory and Tech., vol. 45, pp.2150–2152, Dec. 1997.
[48] B. Welch, K. T. Kornegay, H. M. Park, and J. Laskar, “A 20-GHz low-noise amplifier with active balun in a 0.25-μm SiGe BICMOS technology,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 2092–2097, Oct. 2005.
[49] J. C. Park, J. Y. Park, and H. S. Lee, “Fully embedded 2.4GHz LC-balun into organic package substrate with series resonant tank circuit,” in IEEE MTT-S Int. Microwave Symp. Dig., 2007, pp. 1901–1904.
[50] R. Schwindt and C. Nguyen, “Computer-aided analysis and design of a planar multilayer Marchand balun,” IEEE Trans. Microwave Theory and Tech., vol. 42, pp. 1429–1434, July 1994.
[51] M. C. Tsai, “A new compact wideband balun,” in IEEE MTT-S Int. Microwave Symp. Dig., 1993, pp. 141–143.
[52] Y. J. Yoon, Y. Lu, R. C. Frye, M. Y. Lau, P. R. Smith, L. Ahlquist, and D. P. Kossives, “Design and characterization of multilayer spiral transmission-line baluns,” IEEE Trans. Microwave Theory and Tech., vol. 47, pp. 1841–1847, Sept. 1999.
[53] C.-H. Huang, C.-H. Chen, and T. S. Horng, “Design of integrated planar Marchand balun using physical transformer model,” in Proc. Asia-Pacific Microw. Conf., 2009, pp. 1004–1007.
[54] H. M. Clearfield, J. L. Young, S. D. Wijeyesekera, and E. A. Logan, “Wafer-level chip scale packaging: benefits for integrated passive devices,” IEEE Trans. Adv. Packag., vol. 23, no.2, pp. 247–251, May 2000.
[55] G. Carchon, K. Vaesen, S. Brebels, W. D. Raedt, E. Beyne, and B. Nauwelaers, “Multilayer thin-film MCM-D for the integration of high-performance RF and microwave circuits,” IEEE Trans. Components and Packaging Tech., vol. 24, pp. 510–519, Sept. 2001.
[56] M. Shimozawa, K. Itoh, Y. Sasaki, H. Kawano, Y. Isota, and O. Ishida, “A parallel connected Marchand balun using spiral shaped equal length coupled line,” in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp. 1737–1740.
[57] J. Reed and G. J. Wheeler, “A method analysis of symmetrical four-port networks,” Proc. IRE, vol. 4, pp. 346–352, Oct. 1956.
[58] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Norwood, MA: Artech House, 1999.
[59] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 2005.
[60] K. S. Ang and I. D. Robertson, “Analysis and design of impedance-transforming planar Marchand baluns,” IEEE Trans. Microwave Theory and Tech., vol. 49, no. 2, pp. 402–406, Feb. 2001.
[61] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC interconnect transmission line characterization,” IEEE Trans. Compon., Hybrids, Manuf. Technol., vol. 15, no. 4, pp. 483–490, Aug. 1992.
[62] R. F. Dana and Y. L. Chow, “The current distribution and AC resistance of a microstrip structure,” IEEE Trans. Microwave Theory and Tech., vol. 38, pp. 1268–1277, Sept. 1990.
[63] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “A silicon monolithic spiral transmission line balun with symmetrical design,” IEEE Electron Device Lett., vol. 20, pp. 182–184, April 1999.
[64] Y. J. Yoon, Y. Lu, R. C. Frye, and P. R. Smith, “Spiral transmission-Line baluns for RF multichip module packages,” IEEE Trans. Adv. Packag., vol. 22, no. 3, pp. 332–336, Aug. 1999.
[65] J. Y. Ihm and K. P. Hwang, “RF balun embedded in multilayer organic substrate,” Microwave Opt. Technol. Lett., vol. 34, no. 4, pp. 255–259, Aug. 2002.
[66] J. R. Lee, J. H. Cho, and S. W. Yun, “New compact bandpass filter using microstrip λ/4 resonators with open stub inverters,” IEEE Microw. Guided Wave Lett., vol. 10, no. 12, pp. 526–527, Dec. 2000.
[67] C. C. Chen, Y. R. Chen, and C. Y. Chang, “Miniaturized microstrip cross-coupled filters using quarter-wave or quasi-quarter-wave resonators,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 1, pp. 120–131, Jan. 2003.
[68] S.-C. Lin, Y.-S. Lin, and C. H. Chen, “Extended-stopband bandpass filter using both half- and quarter-wavelength resonators,” IEEE Microw. Wireless Comp. Lett., vol. 16, no. 1, pp. 43–45, Jan. 2006.
[69] K. Ma, K. S. Yeo, J. Ma, and M. A. Do, “An ultra-compact hairpin band pass filter with additional zero points,” IEEE Microw. Wireless Comp. Lett., vol. 17, no. 4, pp. 262–264, April 2007.
[70] K. U-yen, E. J. Wollack, T. A. Wollack, J. Papapolymerou, and J. Laskar, “A bandpass filter design using half-wavelength stepped impedance resonators with internal couplings,” IEEE Microw. Wireless Comp. Lett., vol. 16, no. 8, pp. 443–445, Aug. 2006.
[71] H. Kuan, Y. L. Lin, R. Y. Yang, and Y. C. Chang, “A multilayered parallel coupled microstrip bandpass filter with embedded SIR cells to have a broad upper rejection band,” IEEE Microw. Wireless Comp. Lett., vol. 20, no. 1, pp. 25–27, Jan. 2010.
[72] J.-S. Park, J.-S. Yun, and D. Ahn, “A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 9, pp. 2037–2043, Sept. 2002.
[73] A. Görür, “A novel dual-Mode bandpass filter with wide stopband using the properties of microstrip open-loop resonator,” IEEE Microw. Wireless Comp. Lett., vol. 12, no. 10, pp. 386–388, Oct. 2002.
[74] Y.-C. Chiou, J.-T. Kuo, and J.-S. Wu, “Miniaturized dual-mode ring resonator bandpass filter with microstrip-to-CPW broadside-coupled structure,” IEEE Microw. Wireless Comp. Lett., vol. 18, no. 2, pp. 97–99, Feb. 2008.
[75] G. Zhang, F. Huang, and M. J. Lancaster, “Superconducting spiral filters with quasi-elliptic characteristic for radio astronomy,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 3, pp. 947–951, March 2005.
[76] G.-A. Lee, M. A. Megahed, and F. D. Flaviis, “Low-cost compact spiral inductor resonator filters for System-in-a-Package,” IEEE Trans. Adv. Packag., vol. 28, no. 4, pp. 761–771, Nov. 2005.
[77] S.-C. Lin, C.-H. Wang, and C. H. Chen, “Novel patch-via-spiral resonators for the development of miniaturized bandpass filters with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 1, pp. 137–146, Jan. 2007.
[78] S. Dalmia, V. Sundaram, G. White, and M. Swaminathan, “Liquid crystalline polymer (LCP) based lumped-element bandpass filters for multiple wireless applications,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004, pp. 1991–1994.
[79] G. J. Carchon, W. De Raedt, and E. Beyne, “Wafer-level packaging technology for high-Q on-chip inductors and transmission lines,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1244–1251, April 2004.
[80] R. Levy, “Filters with single transmission zeros at real or imaginary frequencies,” IEEE Trans. Microw. Theory Tech., vol. 24, no. 4, pp. 172–181, April 1976.
[81] J.-S. Lim and D. C. Park, “A modified Chebyshev bandpass filter with attenuation poles in the stopband,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 6, pp. 898–904, June 1997.
[82] J. S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, New York: Wiley, 2001.
[83] I. Cendoya, J. de Nó, B. Sedano, A. García-Alonso, D. Valderas, and I. Gutiérrez, “A new methodology for the on-wafer characterization of RF integrated transformers,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, pp. 1046–1053, May 2007.
[84] R. W. Rhea, HF Filter Design and Computer Simulation, Noble Publishing, Tucker, Georgia, 1994.
[85] J. T. Kuo, T. H. Yeh, and C. C. Yeh, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 4, pp. 1331–1337, April 2005.
[86] Y. P. Zhang and M. Sun, “Dual-band microstrip bandpass filter using stepped-impedance resonators with new coupling schemes,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3779–3785, Oct. 2006.
[87] S. Sun and L. Zhu, “Compact dual-band microstrip bandpass filter without external feeds,” IEEE Microw. Wireless Comp. Lett., vol. 15, no. 10, pp. 644–646, Oct. 2005.
[88] Q.-X. Chu and F.-C. Chen, “A compact dual-band bandpass filter using meandering stepped impedance resonators,” IEEE Microw. Wireless Comp. Lett., vol. 18, no. 5, pp. 320–322, May 2008.
[89] J. T. Kuo, M. J. Maa, and P. H. Lu, “A microstrip elliptic function filter with compact miniaturized hairpin resonators,” IEEE Trans. Microw. Guided Wave Lett., vol. 10, no. 3, pp. 94–95, March 2000.
[90] J. R. Lee, J. H. Cho, and S. W. Yun, “New compact bandpass filter using microstrip λ/4 resonators with open stub inverters,” IEEE Trans. Microw. Guided Wave Lett., vol. 10, no. 12, pp. 526–527, Dec. 2000.
[91] J. S. Hong and M. J. Lancaster, “Cross-coupled microstrip hairpin resonator filter,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 1, pp. 118-122, Jan. 1998.
[92] J. S. Hong and M. J. Lancaster, “Coupling of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2099-2109, Dec. 1996.
[93] M. Zargari, D. K. Su, C. P. Yue, S. Rabii, D. Weber, B. J. Kaczynski, S. S. Mehta, K. Singh, S. Mendis, and B. A. Wooley, “A 5-GHz CMOS transceiver for IEEE 802.11a wireless LAN systems,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1688–1694, Dec. 2002.
[94] M. A. Margarit, D. Shih, P. J. Sullivan, and F. Ortega, “A 5-GHz BiCMOS RF IC front-end for IEEE 802.11a/Hiper LAN wireless LAN,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1284–1287, Jul. 2003.
[95] J. P. Maligeorgos and J. R. Long, “A low-voltage 5.1–5.8 GHz imagereject receiver with wide dynamic range,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1917–1926, Dec. 2000.
[96] P. Wang, L. Chen, C. Y. Tan, and C. K. Ong, “Analysis of quality factors of spiral resonators,” Microwave Opt. Technol. Lett., vol. 48, no. 3, pp. 439–443, March 2006.
[97] J.-T. Kuo and H.-S. Cheng, “Design of quasi-elliptic function filters with a dual-passband response,” IEEE Microw. Wireless Comp. Lett., vol. 14, no. 10, pp. 472–474, Oct. 2004.
[98] A. Djaiz and A. Denidni, “A new compact microstrip two-layer bandpass filter using aperture-coupled SIR-hairpin resonators with transmission zeros,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 1929-1936, May 2006.
[99] S. Amari, “Direct synthesis of folded symmetric resonator filters with source–load coupling,” IEEE Microw. Wireless Comp. Lett., vol. 11, no. 6, pp. 264–266, Jun. 2001.
[100] C.-K. Liao and C.-Y. Chang, “Design of microstrip quadruplet filters with source–load coupling,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 7, pp. 2302-2308, July 2005.
[101] C. M. Tsai, S. Y. Chen and C. C. Tsai, “Performance of a planar filter using a 0o feed structure,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 10, pp. 2362-2367, Oct. 2002.
[102] S. Sun and L. Zhu, “Compact dual-band microstrip bandpass filter without external feeds,” IEEE Microw. Wireless Comp. Lett., vol. 15, no. 10, pp. 644–646, Oct. 2005.
[103] M.-H. Weng, H.-W. Wu, and Y.-K. Su, “Compact and low loss dual-band bandpass filter using pseudo-interdigital stepped impedance resonators for WLANs,” IEEE Microw. Wireless Comp. Lett., vol. 17, no. 3, pp. 187–189, Mar. 2007.
[104] M. Zhou, X. Tang, and F. Xiao, “Compact dual band bandpass filter using novel E-type resonators with controllable bandwidths,” IEEE Microw. Wireless Comp. Lett., vol. 18, no. 12, pp. 779–781, Dec. 2008.
[105] J. Wang, Y.-X. Guo, B.-Z. Wang, L.C. Ong, and S. Xiao, “High-selectivity dual-band stepped-impedance bandpass filter,” Electron. Lett., vol. 42, no. 9, pp. 538–540, April 2006.
[106] C.-M. Tsai, H.-M. Lee, and C.-C. Tsai, “Planar filter design with fully controllable second passband,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3429–3439, Nov. 2005.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code