Responsive image
博碩士論文 etd-1028112-160816 詳細資訊
Title page for etd-1028112-160816
論文名稱
Title
台灣濕地星蟲多樣性及污染物生物累積之研究
Study on the sipunculan diversity and the bioaccumulation in wetland of Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-09-17
繳交日期
Date of Submission
2012-10-28
關鍵字
Keywords
多樣性、生物累積、濕地、台灣、星蟲
Taiwan, Wetland, Sipunculan, Diversity, Bioaccumulation
統計
Statistics
本論文已被瀏覽 5715 次,被下載 205
The thesis/dissertation has been browsed 5715 times, has been downloaded 205 times.
中文摘要
中文摘要

星蟲是一類兩側對稱、身體不分節、具體腔及外型似蟲的食碎屑海洋無脊椎動物,目前全球已記錄約有150種。由於星蟲與底質間密切的接觸關係,並且有食底泥的習性,十分適合研究汙染物的累積。牠們是一種餌料生物,同時也是一道中國沿岸流傳已久的食材。先前台灣沿岸的星蟲研究,主要著重於棲息在硬底質物種的分類及分佈,因此本研究的目的之一是針對在海草場與濕地軟底質棲地的星蟲,進行物種多樣性,族群動態及生態方面的研究。在10種台灣發現的星蟲中,方格星蟲Sipunculus nudus是在台灣濕地的優勢種,而香山濕地位於工業汙染的地區,此處的方格星蟲也是一種具水產經濟的種類,但對其族群及環境生理所知有限,因此本研究之另一目的是調查該濕地方格星蟲之族群動態,並分別針對台灣與離島海草床及香山濕地沉積物存有之無機污染物:微量元素砷(As)、鉻(Cr)、鎘(Cd)、銅(Cu)、汞(Hg)和鋅(Zn)及有機污染物: (Polycyclic Aromatic Hydrocarbons, PAHs)等加以分析,以了解上述兩類型軟底質棲地Sipunculus nudus的汙染物質之生物累積情形。本論文研究之主要結果如下:
(1)台灣首次調查海草場軟底質棲地星蟲的物種多樣性,並描述物種分類及形態特徵;總共鑑定出3科10種及42 個樣本。
(2)對於具養殖潛力的優勢種方格星蟲,初次得知其族群在香山濕地的現存量及生殖週期,此區域星蟲的資源量為0.97± 0.46 ind.m-2,性別比約為1:1,繁殖期於每年的4-9月,繁殖高峰期於每年的5-8月,成熟個體的體長約在11cm以上可達性成熟。
(3)第一次實際量測微量元素在星蟲及其環境周圍沉積物的含量。分析及比對台灣海草場及濕地Sipuncula nudus 與 Siphonosoma vastum 的砷(As)、鉻(Cr)、鎘(Cd)、銅(Cu)、汞(Hg)和鋅(Zn)的生物累積特性。在海草場及溼地星蟲的生物累積機制皆會累積高含量的銅。在微量元素與生物累積指數的主成分分析,呈現並區分出兩種不同棲地(海草床和濕地)的分群,以及對應出微量元素分佈。兩種星蟲對於某些微量元素有不同的生物累積,結果可能由於是不同棲地沉積物的不同生化特性,同時也是種類間的不同生物累積。比對星蟲與台灣沿岸的無脊椎動物中的微量元素:砷(As)、鉻(Cr)、鎘(Cd)、銅(Cu)、汞(Hg)和鋅(Zn)的濃度顯示,在星蟲中的微量元素明顯低於在此區域的無脊椎動物。
(4)首次了解多環芳香烴(PAHs)在Sipunculus nudus體內不同部位的累積情形,發現體型較小的星蟲含量較高,主要集中在腎管部位,以低環PAHs的比例較高。分析出PAHs在星蟲觸手、腎管、腸道及肌肉等部位的生物累積模式。PAH logKow係數與logBAF的參數呈現,星蟲可能有透過生物轉化排出或降解高環PAH之機制。台灣香山濕地的Sipunculus nudus與世界其他國家沿岸的無脊椎動物的t-PAH比對顯示,Sipunculus nudus肌肉中的t-PAH含量低於環境中底泥及其他國家沿岸的無脊椎動物的t-PAH含量,對於Sipunculus nudus在漁業資源應用上的建議,應去除其體內臟器部位,僅對於肌肉部位利用,以減少PAHs在生物體之攝入與累積。
Abstract
ABSTRACT

Sipuncula is a group of unsegmented, coelomate, bilaterally symmetrical and wormlike marine deposit-feeding benthic macro-invertebrates. They are abundant along the intertidal habitats and around 150 species have been recorded worldwide. Sipunculans likely accumulate many anthropogenic contaminants by feeding on the contaminated sediments or benthos, and since they are edible marine species and have long been used in Southwest Pacific cuisine, these contaminants may transfer into the food chain and affect the public health of humans.Trace elements and PAHs are the most common contaminants that appear in the coastal areas worldwide. These contaminants lead to losses in oceanic yield and may hazardous effects on health when they enter the food chain.
The previous studies of sipunculans along the coast of Taiwan were mostly focused on the taxonomy and distribution of the species living on the hard -ground habitat (rubble), one of the purposes of this study is aiming at the sipunculans on the seagrass beds and wetland soft-ground habitat for species diversity, population dynamic and ecological related research.
Among 10 native sipunculans species, Sipunculus nudus is the dominant species living at the segrass bed and wetland in Taiwan. Siangshan wetland locates at the area of industrial pollution and S. nudus here is a species with aquatic economy, but is known limitedly of its population and environmental physiology. Therefore, the other purpose of this research is to investigate the S. nudus population in this wetland and analyze the trace elements: arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and zinc (Zn) and the organic pollutants: PAHs, in order to understand the bioaccumulation of S. nudus in the above two types of soft-substrate regarding the pollutants. The main results of this study are as follows:
(1) This study represents a pioneering investigation in Taiwan regarding the species diversity of sipunculans on the seagrass meadow soft-ground sediment, which describes the species and their morphological characteristics. A total of 42 specimens 10 sipunculan species belonging to 3 families were identified.
(2) It is the first time that S. nudus is realized as the dominant species in these soft habitats. Because of its cultivation potential, its population dynamics and reproductive cycle in Siangshan wetland were studied. The population size of
S. nudus in this area is 0.965± 0.46 ind.m-2 and the sex ratio is around 1:1; the reproductive period is from April to September in the year with the peak reproductive period from May to August; the body length of matured individual is over 11cm.
(3) This is the first report in Taiwan on the trace elements in sipunculan and their surrounding sediments. The bioaccumulation characteristics of arsenic (As),
cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), and zinc (Zn) were analyzed and compared in two sipunculan species, S. nudus and Siphonosoma vastum, which were collected from seagrass beds and wetlands in Taiwan. Both sipunculans in the these soft habitats had a high Cu bioaccumulation mechanism. Multivariate analysis, principle component analysis, and partial least squares for discriminant analysis of trace element levels and bioaccumulation factors were used to distinguish the element distributions that corresponded to the two habitats (seagrass beds and wetlands). Different levels of certain trace elements in these two sipunculan species may result not only from the environmental factors of various habitats but also from the accumulation characteristics of various species. The As, Cd, Cr, Cu, Hg, and Zn concentrations were markedly lower in sipunculan than in other invertebrates from the adjacent polluted regions.
(4) This is the first report on the accumulation situation of PAHs in different body tissues (tentacle, nephridium, intestine, and muscle) of S. nudus in Taiwan. It was found that the smaller individuals had higher amount of PAHs with higher percentage of low-ring PAHs and they were mostly concentrated in the nephridium. This study provides the bioaccumulation pattern of PAH in the tentacle, nephridium, intestine, and muscle of S. nudus. The logKow and logBAF parameters show that S. nudus may excrete or decompose high-ring PAHs via biotransformation. By comparing the t-PAH of S. nudus with that of the surrounding substrate and invertebrates along the coasts of other countries, the t-PAH content in the muscle of S. nudus is lower than the sediment and the invertebrates. As a result, I suggest removing the internal organs and utilizing the muscle portion as good to reduce the uptake and accumulation of PAHs from the sipunculans.

目次 Table of Contents
TABLE OF CONTENTS

ACKNOWLEDGEMENTS.......................................................................................III
ABSTRACT(CHINESE).............................................................................................V
ABSTRACT(ENGLISH)........................................................................................VIII
TABLE OF CONTENTS...........................................................................................IX
LIST OF TABLES.....................................................................................................XI
LIST OF FIGURES................................................................................................XIV
INTRODUCTION........................................................................................................1
CHAPTER 1. SIPUNCULANS ASSOCIATED WITH THE SEAGRASS Thalassia hemprichii FROM TAIWAN AND TWO VICINITY ISLAND.............5 CHAPTER 2. THE POPULATION DYNANICS OF A DOMINANT SIPUNCULAN SPECIES Sipunculus nudus AT SIANGSHAN WETLAND IN TAIWAN.....................................................................................................................28
CHAPTER 3. ENVIRONMENTAL ASSESSMENT OF TRACE ELEMENT BIOACCUMULATION IN SIPUNCULAN FROM SEAGRASS AND WETLAND.................................................................................................................45
CHAPTER 4. THE RESEARCH OF POLYCYCLIC AROMATIC HYDROCARBONS, (PAHs) BIOACCUMULATION IN Sipunculus nudus..........................................................................................................................68
CONCLUSIONS........................................................................................................95
REFERENCES...........................................................................................................97




LIST OF TABLE

Table 1-1. Number of individuals of sipunculans found seasonally at the 3 sampling
areas from Taiwan………………………………………………………………..…..21
Table 1-2. List of sipuncula species in the 3 sampling areas of seagrass beds in
Taiwan………………………………………………………………………………..22
Table 1-3. Community parameters (S = Number of species, N =Number of
individuals, H’ = Shannon-Weaver’s Diversity Index and J’ = Pielou’s Evenness
Index ) in the three sampling areas of seagrass beds along the coast of Taiwan……..23
Table 1-4. Density of sipunculans in the 3 sampling areas of seagrass beds in Taiwan
……………………………………………………………..........................................23
Table 1-5. Sipuncula species found along the Taiwan coast (A = Sato, 1939; B =
Fenglu, 1989; C = Hong et. al., 2007; Hong & Fenglu, 1993 and E = Hsueh et. al.,
2006)…………………………………………………………………………………24
Table 2-1. Annual variation of sex ratio in Sipunculus nudus …………………....…37
Table 2-2. Annual variation of sea surface temperature in Siangshan wetland……...37
Table 2-3. Annual variation of the composition of oocytes in Sipunculus nudus…...38
Table 3-1. Location of sampling sites and the information of the sipunculan
sample………….....................………………………………………………………..57
Table 3-2. Multivariate statistical results from elements contents of sipunculan and
sediments in the PCA and PLS models………………………………………………58
Table 3-3. Multivariate statistical analysis of sipunculan bioaccumulation factors of
trace elements in the PCA and PLS models…………………………...……………..59
Table 3-4. Comparisons of mean elements contents (ug g-1 dry wt) in sipunculan
(Sipuncula nudus), Oyster (Crassostrea gigas) and sediments…………….………..60
Table 3-5. Dietary intake of trace elements by eating sipunculan as seafood (μg/kg
body weight/week) in Taiwan and compare with the provincial tolerable weekly
intake………………………………………………………..………………………..61
Table 4-1. The PAH analyzed, MDLs, and spiked recoveries……………………….84
Table 4-2. Comparison of total PAH concentrations in sediments of other coastal
areas in the world………………………………………………………………...…..85
Table 4-3. Concentration of total PAH concentrations in sipunculan and oyster from
different location in the world……………………………………………………..…86



















LIST OF FIGURES

Figure 1-1. Study area with the location of sampling sites……………………….…25
Figure 1-2. A. Sipunculus nudus. Egg in the coelomic cavity. B-D. Siphonosoma rotumanum. B. Hook with an associated papilla. C. Anus on the trunk. D. Egg in the colemic cavity. E-F. Siphonosoma vastum. E. Hook on the introvert……………….26
F. Digitiform-shaped structures on the rectum. G. Phascolosoma nigrescens. Hook on the introvert. H-I. Phascolosoma scolops. H. Preanal papillae on the trunk. I. Hook on the introvert. Scale bars: A = 30 μm, B = 40 μm, C = 0,4 mm, D = 20 μm, E = 25 μm, F = 0.6 mm, G = 10 μm, H =60μm, I = 15 μm
Figure 1-3. A. Apionsoma misakianum. Hook on the distal part of the introvert. B-C. Aspidosiphon gracilis. B. Unidentate hook on the distal part of the introvert. C. Pyramidal hook on the proximal part of the introvert. D-G. Aspidosiphon laevis. D. Tentacles surrounding the nuchal organ. E. Caecum with lateral branches. F. Hook on the introvert. G. Egg in the colemic cavity. H-I. Aspidosiphon tenuis. H. Bidentate hook on the introvert. I. Unidentate hook on the introvert. Scale bars: A = 10 μm, B = 10 μm, C = 10 μm, D = 1 mm, E = 2 mm, F = 20 μm, G = 20 μm, H =10 μm, I = 10 μm…………………………………..………............................................27
Figure 2-1. Study area with the location of sampling sites………………………… 39
Figure 2-2. Annual variation of Sipunculus nudus population size at Siangshan wetland……………………………………………………………………………….40
Figure 2-3. The annual variation of length-weight relationship of Sipunculus nudus at Siangshan wetland………………………………………………………………....41
Figure 2-4. Annual variation of length percentage in Sipunculus nudus……….…42
Figure 2-5. The length-weight relationship of Sipunculus nudus……………………43
Figure 2-6. Summary of developing process of germ cells in Sipunculus nudus……44
Figure 3-1. Study area with the location of sampling sites……………………..…...62
Figure 3-2. Means of analyzed element levels (ug g-1 dry wt) in sipunculans and sediments…………………………………………………………………………..…63
Figure 3-3. PCA score plot of element levels for sipuncula and sediment. PCA score plot (PC1 vs. PC2) for sipuncula and sediment in the seagrass and wetland habitats. filled asterisk = sediment, seagrass of Green island; filled circle = Sv, seagrass of Shiuliuchiu; filled cross = Sn, seagrass of Green island; filled diamond = Sn, watland of Siangshan; filled square =sediment, watland of of Siangshan; filled triangle = sediment, seagrass of Shiuliuchiu…………………………………………64
Figure 3-4. PLS-DA score plots (PLS1 vs. PLS2) for sipunculans and sediments ; filled asterisk = sediment, seagrass of Green island; filled circle = Sv, seagrass of Shiuliuchiu; ; filled cross = Sn, seagrass of Green island; filled diamond = Sn,watland of Siangshan; filled square = sediment, watland of Siangshan; filled triangle = sediment, seagrass of Shiuliuchiu……………………....………………...………….65
Figure 3-5. PLS-DA loadings biplot representing correlation Scales between trace elements and sipuncula samples.Visualization of correlations were scaled between the
trace elements and Sipunculans, filled diamond = wetland; filled square = Seagrass.65
Figure 3-6. Bioaccumulation factor of sipunculans in the three samplingsites..........66
Figure 3-7. PLS-DA score plots (PLS1 vs. PLS2) for bioaccumulation factors of sipunculans, filled diamond = Siphonosoma vastum, seagrass of Shiuliuchiu; filled square = Sipuncula nudus, watland of Siangshan; filled triangle = Sipuncula nudus, seagrass of Green island...............................................................................................67
Figure 3-8. PLS-DA loadings biplot representing correlation scales of bioaccumulation factors of sipunculans. Visualization of correlations were scaled bioaccumulation factors, filled diamond = Siphonosoma vastum; filled square = Sipuncula nudus...........................................................................................................67
Figure 4-1. The length-weight relationship of Sipunculus nudus................................87
Figure 4-2. The total of PAHs analytical concentrations (ng/g dry weight) in three groups of Sipunculus nudus.........................................................................................88
Figure 4-3. The total PAHs (ng/g dry weight) in four tissues of Sipunculus nudus;
T = tentacle; N= nephridium; I = intestine; M= muscle..............................................89
Figure 4-4. PLS-DA score plots (PLS1 vs. PLS2) for Sipunculus nudus and sediments ; filled asterisk = sediment; filled diamond = small group of Sipunculus nudus; filled circle = medium group of Sipunculus nudus ; filled square = Large group of Sipunculus nudus...........................................................................................90
Figure 4-5. PLS-DA loadings biplot representing correlation
scales between PAHs samples. Visualization of correlations were scaled between the Sipunculus nudus and sediments, filled diamond = sediments; filled square = Sipunculus nudus..........................................................................................................90
Figure 4-6 The 12 PAHs bioaccumulation factor in four tissues of three group of Sipunculus nudus; T = tentacle; N= nephridium; I = intestine; M= muscle................91
Figure 4-7 The ovum in nephridium of Sipunculus nudus.........................................92
Figure 4-8. PLS-DA score plots (PLS1 vs. PLS2) for bioaccumulation factors of Sipunculus nudus, filled square = tentacle; filled circle = nephridium; filled diamond = intestine; filled asterisk = muscle..............................................................................93
Figure 4-9. PLS-DA loadings biplot representing correlation scales of bioaccumulation factors of Sipunculus nudus. Visualization of correlations were scaled bioaccumulation factors, filled triangle = PAH; filled square = Sipunculan.....93
Figure 4-10. Relationship between log BAF and log Kow in Sipunculus nudus..............................94


參考文獻 References
REFERENCES

Açik, S. 2007. Observations on the population characteristics of Apionsoma (Apionsoma) misakianum (Sipuncula: Phascolosomatidae), a new species for the Mediterranean fauna. Scientia Marina 71:571–577.
Açik, S. 2008. Sipunculans along the Aegean coast of Turkey. Zootaxa 1852: 21–36.
Açik, S., G. V. V. Murina, M. E. Çinar, and Z. Ergen. 2005. Sipunculans from the coast of Northern Cyprus. Zootaxa 1077:1–23.
Amiard, C., T. Amiard, B. Berthet, and C. Metayer. 1987. Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd, Pb) trace metals in various estuarine and coastal organisms. Journal of Experimental Marine Biology and Ecology 106:73–89.
Apostolaki, E. T., T. Tatiana, M. Tsapakis, and I. Karakassis. 2007. Fish farming impact on sediments and macrofauna associated with seagrass meadows in the Mediterranean. Estuarine Coastal and Shelf Science 75:408–416.
Barron, M. G. 1995. Bioaccumulation and concentration in aquatic organisms. In D. J. Hoffman, B. A. Rattner, G. A. Burton Jr, and J. Cairns Jr. (Eds.), Handbook of ecotoxicology, Boca Raton.
Baumard, P., H. Budzinski, and P. Garrigues. 1998. PAHs in Arcachon Bay, France: origin and biomonitoring with caged organisms. Marine Pollution Bulletin 36: 577–586.
Binelli, A., and A. Provini. 2003. POPs in edible clams from different Italian and
European markets and possible human health risk. Marine Pollution Bulletin
46:879–886.
Bintein, S., J. Devillers, and W. Karcher. 1993. Nonlinear dependence of fish bioconcentration on n-octanol/water partition coefficient. SAR QSAR Environmental Research 1:29–39.
Boening, D. W. 2000. Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351.
Bolton, J. L., C. M. Stehr, D. T. Boyd, D. G. Burrows, A. V. Tkalin, and T. S. Lishavskaya. 2003. Organic and trace metal contaminants in sediments and English sole tissues from Vancouver Harbour, Canada. Marine Environmental Research 57:19–36.
Boudouresque, A., G. Jeudy, and J. Olivier. International Workshop on Posidonia oceanica beds. GIS Posidonie Publ, France.
Canli, M., R. M. Stagg, and G. Rodger. 1997. The induction of metallothionein in tissues of the Norway lobster Nephrops norvegicus following exposure to cadmium, copper and zinc: the relationships between metallothionein and the metals. Environmental Pollution 96: 343–350.
Chen, H., G. W. Lin, W. Chen, Z. K. Liu, and X. C. Wang. 2009. Observation on the reproductive cycle of Phascolosoma esculenta. Marine Fisheries 31: 139–145.
Chen, X. X., Y. L. Chang, and Y. Yong. 2009. Effects of Cd and Zn on oxygen consumption and ammonia excretion in sipuncula (Phascolosoma esculenta). Ecotoxicology and Environmental Safety 72:507–515.
Chen, Y. 1963. A preliminary report on the gephyrean fauna of Hainan. Studia Marina Sinica 4:1–20.
Chen, Z., and L. M. Mayer. 1998. Digestive proteases of the lugworm (Arenicola marina) inhibited by Cu from contaminated sediments. Environmental Toxicology and Chemistry 17:433–438.
Chien, L. C., T. C. Hung, K. Y. Choang, C. Y. Yeh, P. J. Meng, and M. J. Shieh. 2002. Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Science of the Total Environment 285:177–185.
Cheng J. O., F. C. Ko, J. J. Li, T. H. Chen, Y. M. Cheng, and C. L. Lee. Concentrations of polycyclic aromatic hydrocarbon in the surface sediments from inter-tidal areas of Kenting coast, Taiwan. Environmental Monitoring and Assessment 184:3481–3490.
Coelho-Souza, S. A., J. R. D. Guimaraes, J. B. N. Mauro, M. R. Miranda, and S. M. F. O. Azevedo. 2006. Mercury methylation and bacterial activity associated to tropical phytoplankton. Science of the Total Environment 364:188–199.
Cutler, E. B. 1994. The Sipuncula, Their Systematics, Biology and Evolution. Comstock Publishing Associates: Ithaca, New York.
Cutler, E. B., and A. Schulze. 2004. Sipuncula from Barbados, including two new for the Island plus Siphonosoma vastum; first record from the Atlantic Ocean. Bulletin of Marin Science 74:225–228.
Cortazar, E., L. Bartolome´, S. Arrasate, A. Usobiaga, J. C. Raposo, O. Zuloaga, and N. Etxebarria. 2008. Distribution and bioaccumulation of PAHs in the UNESCO protected natural reserve of Urdaibai, Bay of Biscay. Chemosphere 72:1467–1474.
Dean, H. 2001. Marine Biodiversity of Costa Rica: The phyla Sipuncula and Echiura. Revista de Biologia Tropical 49:85–90.
Dean, H. K., I. Hernandez-Avila, and E. B. Cutler. 2007. Sipunculans of the Caribbean coast of Venezuela and Curacao. Zootaxa 1431:45–54.
Deng, Z. R., B. Hung, and W. Z. Ku, 2009. Morphology and Histological Structure of the Caecum in Sipunculus nudus. Journal of Hunan City University 2:64–66. (in Chinese).
Devillers, J. 1998. Comparative QSAR. Taylor and Francis, Washington, D C. Meylan.
Doong, R. A., S. H. Lee, C. C. Lee, Y. C. Sun, and S. C. Wu. 2008. Characterization and composition of Heavy metals and persistent organic pollutants in water and estuarine sediments from Gao-Ping River, Taiwan. Marine Pollution Bulletin 57: 846–857.
Du Laing, G., M. Erik, D. Marjan, V. Bart, R. Jörg, and M. T. Filip. 2009a. Heavy metal mobility in intertidal sediments of the Scheldt estuary: field monitoring. Science of the Total Environment 407:2919–2930.
Du Laing, G., J. Rinklebe, B.Vandecasteele, E. Meers, and F. M. G. Tack. 2009b. Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Science of the Total Environment 407:3972–3985.
Edmonds, S. J. 1966. Siphonosoma hawainense, a new sipunculoid from Hawaii (Sipunculoidea). Pacific Science 20: 386-388.
Edmonds, S. J. 1971. Some sipunculans and echiurans, chiefly from Guam (Sipuncula and Echiura). Micronesica 7:137–151.
Edwards, C. A. 1998. Soil and Water Conservation Society, International St. Lucie Press. Ankeny, Iowa.
Fan, W., W. X. Wang, and J. Chen. 2002. Geochemistry of Cd, Cr, and Zn in highly contaminated sediments and its influences on assimilation by marine bivalves. Environmental Science and Technology 36:5164–5171.
Fisher, W. K. 1950. Two new subgenera and a new species of Siphonosoma (Sipunculoidea). Annals and Magazine of Natural History 3:805–808.
Forstner, U. 1990. Inorganic sediment chemistry and elemental speciation. In R. Baudo, J. Giesy, and H. Muntau (Eds.), Sediments: chemistry and toxicity of in-pace pollutants. Lewis Publishers Inc, USA.
Frohne, T., J. Rinklebe, R. A. Diaz-Bone, and G. Du Laing. 2011. Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma. 160:414–424.
Frohne, T., J. Rinklebe, U. Langer, G. Du Laing, S. Mothes, and R. Wennrich 2012. Biogeochemical factors affecting mercury methylation rate in two contaminated floodplain soils. Biogeosciences 9:493–507.
Ga¨elle, R., D. Fichet, M. Louis, and S. Lemoine. 2012. Polycyclic aromatic hydrocarbons (PAHs) in surface sediment and oysters (Crassostrea rhizophorae) from mangrove of Guadeloupe: Levels, bioavailability, and effects. Ecotoxicology and Environmental Safety 79:80–89.
Han, B. C., and T. C. Hung. 1990. Green oysters caused by copper pollution on the Taiwan coast. Environmental Pollution 65:347–362.
Han, B. C, W. L. Jeng, T. C. Hung, and M. Y. Wen. 1996. Relationship between copper speciation in sediments and bioaccumulation by marine bivalves of Taiwan. Environmental Pollution 91:35–39.
Han, B. C., W. L. Jeng, T. C. Hung, Y. C. Ling, M. J. Shieh, and L. C. Chien. 2000. Estimation of element and organochlorine pesticide exposures and potential health threat by consumption of oysters in Taiwan. Environmental Pollution,
109:147–156.
Holland, P. T., C. W. Hickey, D. S. Roper, and T. M. Trower. 1993. Variability of organic contaminants in inter-tidal sandflat sediments from Manukau Harbour, New Zealand. Archives of Environmental Contamination and Toxicology 25: 456–463.
Hong, Z., and F. L. Li. 1993. Sipunculans from the South China Sea, The Marine Biology of the South China Sea. Proceedings of the First International Conference on the Marine Biology of Hong Kong and the South China Sea (B. Morton ed). Hong Kong University Press, Hong Kong.
Hong, Z., F. L. Li, and W. Wei. 2007. Fauna Sinica. Invertebrata vol. 46. Sipuncula and Echiura. China Ocean Press, Beijing.
Hsiao, S. H., C. Y. Lee, C. T. Shih, and J. S. Hwang. 2004. Calanoid Copepods of the Kuroshio Current East of Taiwan, with Notes on the Presence of Calanus jashnovi Huslemann, 1994. Zoological Studies 43:323–331.
Hsieh, I. T., S. Acik, and H. K. Mok. 2009. Sipunculans associated with the seagrass Thalassia hemprichii from Taiwan and two vicinity Islands. Cahiers de Biologie Marine 50:171–182.
Hsueh, P., Y. Cheng, and C. Kou. 2006. The Aspidosiphonids (Sipuncula: Aspidosiphoniformes) of Taiwan. Journal of the Fisheries Society of Taiwan 33: 365–376.
Hung, C. C., G. G. Gong, F. C. Ko, H. Y. Chen, M. L. Hsu, and J. M. Wu. 2010. Relationships between persistent organic pollutants and carbonaceous materials in aquatic sediments of Taiwan. Marine Pollution Bulletin 60:1010–1017.
Hung, T. C., P. J. Meng, B. C. Han, A. Chuang, and C. C. Hung. 2001. Heavy metals in different species of mollusca, water and sediments from Taiwan coastal area. Chemosphere 44:833–841.
Hung, T. C., T. Y. Lee, and T. F. Liao. 1998. Determination of butyltins and phenyltins in oysters and fishes from Taiwan coastal waters. Environmental Pollution 102:197–203.
Jaffe´, R., I. Leal, J. Alvarado, P. R. Gardinali, and J. L. Sericano. 1998. Baseline study on the levels of organic pollutants and heavy metals inbivalves from the Morrocoy National Park,Venezuela. Marine Pollution Bulletin. 36:925–929.
Jeng, M. S., W. L. Jeng, T. C. Hung, C. Y. Yeh, R. J. Tseng, and P. J. Meng. 2000. Mussel watch: a review of Cu and other elements in various marine organisms in Taiwan, 1991–1998. Environmental Pollution 110:207–215.
Karickhoff, S. W., D. S. Brown., and T. A. Scott. 1979. Sorption of hydrophobic pollutants on natural sediments. Water Research 13:241–248.

Ko, F. C., and J. E. Baker. 1995. Partitioning of hydrophobia organic contaminants to resuspended sediments and plankton in the mesohaline Chesapeake Bay. Marine Chemistry 49:171–188.
Lappalainen, A., G. Hallfors, and P. Kangas.1977. Littoral benthos of the Northern Baltic Sea. IV. Pattern and dynamics of macrobenthos in a sandy-bottom Zostera marina community in Tvarminne. Internationale Revue der gesamten Hydrobiologie 62:465–503.
Lee, C. L., M. D. Fang, and M. D. Hsieh. 1998. Characterization and distribution of elements in surficial sediments in southwestern Taiwan. Marine Pollution Bulletin 36:464–471.
Li, F. L. 1985. On the peanut worms (Sipunculida) of Xisha Islands, Guangdong Province. China. 2. A new species of the Siphonosoma. Journal of Shandong College of Oceanology 15:55–63.
Li, F. L. 1989. Studies on the genus Phascolosoma (Sipuncula) off the China coasts. Journal of Ocean University of Quingdao 19:78–90.
Li, F. L., Z. Hong, and W. Wei. 1992. A checklist of Sipuncula from the China coasts. Journal of Ocean University of Quingda 22:72–88.
Liang, G. I. 1990. The first investigation of Sipunculus nudus at Guangxi coastal area. Guangxi Agricultural Sciences 1:46–48.
Lin, H. J., and K. T. Shao. 1998. Temporal changes in the abundance and growth of intertidal Thalassia hemprichii seagrass beds in southern Taiwan. Botanical Bulletin of Academia Sinica 39:191–198.
Lin, S., and I. J. Hsieh. 1999. Occurrences of Green Oyster and Heavy metals Contaminant Levels in the Sien-San Area, Taiwan. Marine Pollution Bulletin 38: 960–965.
Long, E. R., D. D. MacDonald, S. L. Smith, and F. D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19:81–97.
Lydia, G., J. F. Machiwa, S. J. M. Mdachi, G. Streck, and W. Brack. 2009. Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania. Environmental Pollution 157:24–34.
Ma, H. W., M. L. Hung, and P. C. Chen. 2007. A systemic health risk assessment for the chromium cycle in Taiwan. Environmental International 33:206–218.
Mazzella, L., and J. A. Ott. 1984. Seosonal changes in some features of Posidonia oceanica (L.) Delile leaves and epiphytes atdifferent depths. (C.F. Boudouresque, A. Jeudy de Grissac and J. Olivier eds.), International Workshop on Posidonia oceanica Beds. GIS Posidonie Publ. France 1:119–127.
Malins, D.C., B. B. McCain, D. W. Brown, M. S. Myers, M. M. Krahn, and
S. L. Chan. 1987. Toxic chemicals, including aromatic and chlorinated hydrocarbons and their derivatives, and liver lesions in white croaker (Genyomemus lineatus) from the vicinity of Los Angeles. Environmental Science and Technology 21:765–770.
Mackay, D., and A. Fraser. 2000. Bioaccumulation of persistent organic chemicals mechanisms and models. Environmental Pollution 110:375–391.
McCready, S. D. J., G. F. Slee, S. E. B. Taylor. 2000. The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Marine Pollution Bulletin 40:999–1006.
Meador, J. P., J. E. Stein, W. L. Reichert and U. Varanasi. 1995. Bioaccumulation of
polycyclic aromatic hydrocarbons by marine organisms. Reviews of Environmental Contamination and Toxicology 143:79.
Meylan, W. M., P. H. Howard, R. S. Boethling, D. Aronson, H. Printup, and S. Gouchie. 1999. Improved method for estimating bioconcentration/
bioaccumulation factor from octanol/water partition coefficient.
Environmental Toxicology and Chemistry 18:664–672.
Morozov, T. B., and A.V. Adrianov. 2002. Fauna of Sipunculans (Sipuncula) of Vostok Bay, Sea of Japan. Russian Journal of Marine Biology 6:365–370.
Morse, J. W., and G. W. Luther. 1999. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta 63:3373–3378.
Murina, G. V. V. 1964. Report on the sipunculid worms from the coast of South Chinese Sea. Trudy Instituda Oceanologii Academii Nauk SSSR. 69:254–270.
Murina, G. V. V., and D. Zavodnik. 1985/1986. Sipuncula of the Adriatic Sea. Thalassia Jugoslavica 21:23–73.
Nakata, H., Y. Sakai, T. Miyawaki, and A. Takemura. 2003. Bioaccumulation and toxic potencies of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in tidal flat and coastal ecosystems of the Ariake Sea, Japan. Environmental Science and Technology 37:3513–3521.
National Academy of Sciences. 1980. Recommended dietary allowances (9th ed.). Washington: NAS.
Nguyen, T, H., T. N. Mai, T. N. Nguyen, and T. D. Huynh. 2009. The distribution of peanut-worm (Sipunculus nudus) in relation with geo-environmental characteristics. VNU Journal of Science, Earth Sciences 23:110–115.
Nicole, A. H., L. J. Emma, K. K. Catherine, and L. S. Stuart. 2011. Physico-chemical changes in element-spiked sediments deployed in the field: implications for the interpretation of in situ studies. Chemosphere 83:400–408.
Otake, T., M. J. Miller, T. Inagaki, G. Minagawa, A. Shinoda, Y. Kimura, S. Sasai, M. Oya, S. Tasumi, Y. Suzuki, M. Uchida, and K. Tsukamoto. 2006. Evidence for migration of metamorphosing larvae of Anguilla japonica in the Kuroshio. Costal Marine Science 30:453–458.
Pagola-Carte, S., and J. I. Salinas Saiz. 1996. Sipunculans (phylum Sipuncula) from the South China Sea. Ciencias Naturales 48:61–70.
Pagola-Carte, S., and J. I. Salinas Saiz. 2000. Sipuncula from Hainan Island (China). Journal of Natural History 34:2187–2207.
Pancucci-Papadopoulou, M. A., G. V. V. Murina, and A. Zenetos. 1999. The phylum Sipuncula in the Mediterranean Sea. Monographs on Marine Sciences 2:1–109.
Pastor, D., J. Boix, V. Fernández, and J. Albaigés. 1996. Bioaccumulation of organochlorinated contaminants in three estuarine fish species (Mullus barbatus,
Mugil cephalus and Dicentrarcus labrax). Marine Pollution Bulletin 32:257–262.
Pechenik, J. A., and M. E. Rice. 2001. Influence of delayed metamorphosis on postsettlement survival and growth in the sipunculan Apionsoma misakianum. Invertebrate Biology 120:50–57.

Peng, S. H., W. X. Wang, X. Li, and Y. F. Yen. 2004. Metal partitioning in river sediments measured by sequential extraction and biomimetic approaches. Chemosphere 57:839–851.
Perugini, M., P. Visciano, A. Giammarino, M. Manera, W. D. Nardo, and M. Amorena. 2007. Polycyclic aromatic hydrocarbons in marine organisms from the Adriatic Sea, Italy. Chemosphere 66:1904–1910.
Peyrot-Clausade, M., and J. F. Brunel. 1990. Distribution patterns of macroboring organisms on Tuléar reef flats (SWMadagascar). Marine Ecology Progress Series. 61:133–144.
Rice, M. E. 1967. A comparative study of the development of Phaseolosoma agassizii, Golfingia pugettensis and Themiste pyroides with a discussion of developmental patterns in the Sipuncula. Ophella 4:143–171.
Rice, M. E. 1981. Larvae adrift. Pattern and problems in life histories of sipunculans. American Zoologist. 21:605–619.
Ronaldo, J. T., A. Cesar, C. D. S. Pereira, R. B. Choueri, D. M. S. Abessa, M. R. L. Nascimento, P. S. Fadini, and A. A. Mozeto. 2012. Bioaccumulation of Polycyclic Aromatic Hydrocarbons and Mercury in Oysters (Crassostrea rhizophorae) from two Brazilian Estuarine Zones. International Journal of Oceanography1:1–8.
Roozbeh, M., M. Mohammadi, A. D. Sohrab, A. Safahieh, A. Savari, and P. Hajeb. 2012. Polycyclic Aromatic Hydrocarbons in Seawater, Sediment, and Rock Oyster Saccostrea cucullata from the Northern Part of the Persian Gulf (Bushehr Province). Water Air Soil Pollut 223:189–198.
Salinas Saiz, J. I. 1986. Los Gusanos Sipunculidos (Sipuncula) de los fondos litorales y circalitorales de las costas de la Peninsula Iberica, Islas Baleares, Canarias y Mares Adyacentes. Monografias Instituto Espanol de Oceanografia 1:1–84.
Salinas Saiz, J. I. 1988. Sipunculiden (Sipuncula) des östlichen Nordatlantik, gesammelt während der Fahrten des FS Meteor. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 85: 7–23.
Salinas Saiz, J. I. 1993. Sipuncula from Réunion Island (Indian Ocean). Journal of Natural History 27:535–555.
Sassa, C., Y. Konishi, and K. Mori. 2006. Distribution of jack mackerel (Trachurus japoncus) larvae and juveniles in the East China Sea, with special reference to the larval transport by the Kuroshio Current. Fisheries Oceangraphy 15:508–518.
Satô, H. 1939. Studies on the Echiuridea, Sipunculidea, and Priapulidea of Japan. The Science Reports of the Tohoku Imperial University 14:339–459.
Sawada, N., Y. Noda, and O. Ochi. 1968. An electron microscope study on the oogenesis of Goifingia ikedai. Memoirs of Ehime University section 6:25–39.
Schulze, A., and M. Rice. 2004. Sipunculan diversity at twin cays, belize with a key to the species. Atoll Research Bulletin 521:1–9.
Sericano, J. L., J. M. Brooks, M. A. Champ, M. C. Kennicutt, and V. V. Makeyev. 2001.Trace contaminant concentrations in the Kara Sea and its adjacent rivers, Russia. Marine Pollution Bulletin 42:1017–1030.
Shen, X.R., D. W. Jiang, and F. X. Jia. 2004. Study on anti-senescence etionect of Sipunculus nudus preparation. Chinese Journal of Marine Drugs 97:30–32.
Shih, R. C., S. S. Chen, M. H. Chang, Y. C. Chiu, Y. R. Chen, and C. C. Cheng. 2006. Analysis and investigation of Heavy metals in shellfishes by GFAAS/FLAAS in Taiwan. Annual Scientific Report of National Laboratories of Foods and Drugs, Department of Health 24:325–344.
Solé, M., C. Porte, and J. Albaigés. 2001. Hydrocarbons, PCBs and DDT in the NW
Mediterranean deep-sea fish Moramoro. Deep Sea Research Part I:
Oceanographic Research Papers 48:495–513.
Stefanelli, P., A. D. Muccio, F. Ferrara, D. A. Barbini. 2004. Estimation of intake of organochlorine pesticides and chlorobiphenyls through edible fishes from the Italian Adriatic Sea during 1997. Food Control 15:27–38.
Stephen, A. C., and S. J. Edmonds. 1972. The Phyla Sipuncula and Echiura. Trustees of the British Museum (Natural History), London.
Storelli, M. M., S. Losada, G. O. Marcotrigiano, L. Roosens, G. Barone, H. Neels, and A. Covaci. 2009. Polychlorinated biphenyl and organochlorine pesticide contamination signatures in deep-sea fish from the Mediterranean Sea. Environmental Research 109:851–856.
Tiawan. 2001. The estimation of daily intake by Taiwanese, Pesticide Residue Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institutes.
Towle, A., and A. C. Giese. 1967. The annual reproductive cycle of the Sipunculid Phascolosoma agassizii. Physiological zoology 40:229–237.
Varanasi, U., J. E. Stein, and M. Nishimoto. 1989. Biotransformation and disposition of polycyclic aromatic hydrocarbons(PAH) in fish. Metabolism of Polycyclic
Aromatic Hydrocarbons in the Aquatic Environment. Boca Raton: CRC Press.
von Westernhagen, H., P. Cameron, D. Janssen, and M. Kerstan. 1995. Age and size
dependent chlorinated hydrocarbon concentrations in marine teleosts. Marine
Pollution Bulletin 30:655–659.
Wang, K. S. 2001. Spatial and vertical variations of heavy metals in the Hsin-Chu area riverine and near shore sediment. Master thesis, Taipei.
WHO. 1987. Principles for the safety assessment of food additives and contaminants in food. Environmental Health Criteria. No. 70. Geneva: WHO.
WHO. 1989. Evaluation of certain food additives and contaminants. Thirty-third report of the joint FAO/WHO expert committee on food additives. WHO technical series, No. 807. Geneva, Switzerland.
WHO. 1996. Trace elements in human nutrition and health. Geneva: World Health Organization.
Wu, H., Z. Ding, Y. Liu, J. Liu, H. Yan, and J. Pan. 2011. Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China. Journal of Environmental Science 23:14–21.
Yan, Q. L., and W. X. Wang. 2002. Metal Exposure and bioavailability to a marine deposit-feeding spipuncula, Sipunculus nudus. Environmental Science and Technology 36:40–47.
Yim, U.H., J. R. Oh, S. H. Hong, S. H. Lee, W. J. Shim, and J. H. Shim. 2002. Identification of PAHs sources in bivalves and sediment 5 years after the Sea Prince oil spill in Korea. Environmental Forensics 3:357–366.
Yoshimura, T., H. Yamakawa, and E. Kozasa. 1999. Distribution of final stage phyllosoma larvae and free-swimming pueruli of Panulirus japonicus around the Kuroshio Current off southern Kyusyu. Japan. Marine Biology 133:293–306.
Zeng, Z. N., W. B. Liu, X. Y. Lin, B. Liu, J. C. Ye, Z. H. Zhang, and S. Q. Wei. 2008.
Study on both Thermal and Salinity Tolerances of Adult Sipunculus nudus. Journal of Fujian Fisheries 4:1–6. (in Chinese).
Zheng, Y. L., D. C. Feng, F. Guo, S. C. Zhou, and C. W. Ko. 2006. Advance in the research on reproductive biology of Sipunculida. Marine Science 30:84–87.
Zhong, H. H., and W. X. Wang. 2006. Metal–solid interactions controlling the bioavailability of mercury from sediments to clams and sipunculans. Environmental Science and Technology 40:3794–3799.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code