Responsive image
博碩士論文 etd-1102112-192733 詳細資訊
Title page for etd-1102112-192733
論文名稱
Title
東沙環礁內水文與營養鹽變化之關係
The relationship between hydrological and nutrient conditions in the Dongsha Atoll
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-09-10
繳交日期
Date of Submission
2012-11-02
關鍵字
Keywords
東沙環礁、水文、營養鹽、沉降顆粒、富集因子
Dongsha Atoll, hydrological, nutrients, settling particulates, enrichment factor
統計
Statistics
本論文已被瀏覽 5695 次,被下載 422
The thesis/dissertation has been browsed 5695 times, has been downloaded 422 times.
中文摘要
本研究主要探討東沙環礁內水文與營養鹽變化之關係及其控制機制。東沙環礁位於南海北部,依地理位置與溫鹽資料推測,環礁內水體應屬南海水團,但被環礁包圍形成半封閉水體海水,環礁內外海水交換只依靠南北航道口,因此環礁內水體易受日照、降雨量等天候因素影響。
本研究分析十次觀測資料,採樣時間從2009年4月至2011年10月,測定溫鹽、pH、溶氧、葉綠素a、TC、POC、TSM、DOC及營養鹽。研究結果顯示,SiO2和PO43-與鹽度為正相關,推測降雨可能為東沙環礁內SiO2和PO43-主要來源,而N+N與鹽度有不顯著的正相關,暗示降雨不是N+N主要來源,也許是固氮影響所致。溫度與葉綠素a存量變化大致相同,可能因環礁內溫度影響光合作用結果所致,但2011年7月時趨勢相反,溫度升高,葉綠素a存量下降,推測可能為日照太強產生光抑制作用使浮游植物無法生長。葉綠素a存量與N+N及SiO2存量有良好相關性,但和PO43-存量為較不顯著之正相關,顯示東沙環礁內浮游植物生長受N+N及SiO2影響。東沙環礁內SiO2濃度高於浮游植物可利用之限制濃度以上,N+N濃度則大多低於浮游植物可利用之限制濃度,因此東沙環礁內浮游植物生長主要為氮限制。葉綠素a存量與TSM、POC及PN存量皆有良好相關性,顯示東沙環礁內顆粒態物質以生物源為主。葉綠素a存量和DOC及DON存量有顯著相關性,但與DOP存量則無相關性,顯示浮游植物為DOC及DON主要來源之一。
東沙環礁內的DOC/DON介於7.34~303之間,平均為30.4;DON/DOP介於3.00~142之間,平均為22.7;DOC/DOP介於104~2546之間,平均為421,皆高於南海北部及東海,且範圍較廣,暗示東沙環礁內浮游植物可能分泌多碳寡氮、磷的DOM,且環礁內之生態系組成種類繁多所致。小潟湖的葉綠素a、DOC及POC濃度皆高於環礁潟湖,顯示小潟湖相對於環礁潟湖為較高生產力環境。
東沙環礁內沉降顆粒之碳酸鈣通量為北南海表層通量的30倍以上,為環礁內為珊瑚礁海域之特徵,且沉降顆粒中之有機物以生物源有機物為主。東沙環礁沉降顆粒之Fe、Mn之EF值皆較接近1,主要為地殼來源。Cu、Zn及Pb之EF值大於1,表示Cu、Zn及Pb的主要來源除了來自於地殼外,應受污染源影響。
Abstract
This study focuses on the relationship between hydrological and nutrient conditions in seawater surrounded by Dongsha Atoll. Dongsha Atoll is located in the northern South China Sea (NSCS), the water properties should be in coherence with the NSCS water masses. However, due to the semi-enclosed topography the water inside Dongsha Atoll is largely affected by local insolation and rainfall.
Significant relationships between SiO2 or PO43- and salinity indicate that rainfall could be a major source of these nutrients. Insignificant relationship between N+N and salinity indicates that rainfall and nitrogen fixation both might affect the distribution of N+N. Temporal variations of temperature and chlorophyll a were alike, except for which occurred in July, 2011. It was probably caused by photo inhibition on phytoplankton growth. The inventory of chlorophyll a was positively correlated with both N+N and SiO2 but not with of PO43-, indicating that phytoplankton growth in Dongsha Atoll was mainly affected by N+N and SiO2. Phytoplankton growth maybe limited by N+N but not by SiO2, as the concentration of SiO2 was mostly beyond the limitation concentration for phytoplankton. According to close relationships between chlorophyll a and TSM, POC and PN, the particulate matter maybe mainly derived from biological origins. The inventory of chlorophyll a was positively correlated with both dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), manifesting the importance of biological origins for DOC and DON concentration.
The ratios of DOC/DON, DON/DOP and DOC/DOP within the atoll were in ranges of 7.34-303 (mean: 30.4), 3.00-142 (mean: 22.7) and 104-2546 (mean: 421), respectively. The ratios are higher than those values in NSCS and East China Sea, implying the excretion of carbon-enriched DOM by phytoplankton. The concentration of chlorophyll a, DOC and POC were higher in the Small Lagoon than in the Atoll Lagoon, implying a relatively high productivity in the Small Lagoon.
The fluxes of carbonate in the atoll was more than 30 times of the flux in the NSCS, due to its unique characteristics in the coral reef habitat. The organic matter of settling particulates was mainly derived from biological sources. The metal of enrichment factor of settling particulates reveals that Fe and Al are mainly derived from crustal sources, while Cu, Zn and Pb are likely influenced by anthropogenic sources.
目次 Table of Contents
論文審定書i
誌謝ii
中文摘要iii
英文摘要v
目錄viii
圖目錄x
表目錄xii
第一章 前言1
第二章 研究區域5
2.1地理位置5
2.2氣象與水文6
第三章 材料與方法10
3.1採樣時間及位置10
3.1.1東沙環礁內採水測站10
3.1.2 東沙環礁內佈放沉積物收集器之測站11
3.2 樣品分析方法15
3.2.1 葉綠素 a 之測定(chlorophyll a, Chl. a)15
3.2.2 低濃度溶解態無機氮之分析(Nitrate + Nitrite)15
3.2.3 低濃度溶解態反應性磷之分析(soluble reactive phosphorus, SRP)16
3.2.4 溶解態矽酸鹽(dissolved silicate)16
3.2.5 溶解態有機氮之分析(dissolved organic nitrogen, DON)17
3.2.6 溶解態有機磷之分析(dissolved organic phosphorus, DOP)17
3.2.7 溶解態有機碳之分析(dissolved organic carbon, DOC)19
3.2.8 顆粒態有機碳、氮之測定(Particulate organic carbon and nitrogen, POC and PN)20
3.2.9 總懸浮顆粒物濃度之測定(total suspended matter, TSM)20
3.2.10 生物性蛋白石含量分析(biogenic opal)21
3.2.11 沉降顆粒金屬元素之分析(Al、Fe、Mn、Si )22
第四章 結果與討論24
4.1 東沙環礁內基本水文參數(溫度、鹽度、pH、溶氧)之季節變化與空間分佈及其可能控制因子24
4.2 營養鹽(N+N、SiO2、PO43-)之季節變化與空間分佈及其可能控制因子40
4.3 潮汐變化對東沙環礁內水文及營養鹽之影響53
4.4 葉綠素a、總懸浮物質濃度(TSM)及顆粒態有機碳、氮(POC、PN)之季節變化與空間分佈58
4.5 溶解態有機碳、氮、磷(DOC、DON、DOP)之季節變化與空間分佈70
4.6 東沙環礁潟湖與東沙島小潟湖水質比較80
4.7 沉降顆粒各參數通量(POC、PIC、opal及PN)及金屬元素87
第五章 結論91
參考文獻95
中文部份:95
網站:96
英文部份:96
參考文獻 References
中文部份:
王玉懷、洪佳章,2009。東沙環礁公園海洋環境長期調查研究(一)。海洋國家公園管理處委託辦理報告。共243頁。
王玉懷、洪佳章、李逸環,2010。東沙環礁公園海洋環境長期調查研 究(二)。海洋國家公園管理處委託辦理報告。共262頁。
宋克義,2009。東沙環礁珊瑚群聚調查分析與復育策略研究。海洋國 家公園管理處委託研究報告。共97頁。
林幸助、陳月英、陳正平,2010。波光綠茵-東沙海草床。海洋國家公園管理處。共207頁。
林斐然,2007。東南亞河川流域及海洋之碳循環—子計畫九:南海海域大氣中微量元素及營養鹽成分之傳輸及沉降通量研究(I)。行 政院國家科學委員會專題研究計畫。共16頁。
洪佳章,2002。南海生地化整合研究—子計畫四:南海北部有機碳氮磷生地畫作用(II)。行政院國家科學委員會專題研究計畫。共8 頁。
宮守業、王士偉,2011。碳酸岩發育與構造運動:以東沙環礁為例(I),行政院國家科學委員會。共4頁。
陳仲吉、夏復國、詹森、許世傑,2010。東沙環礁潟湖生態系統研究(一)。海洋國家公園管理處委託辦理報告。共216頁。
陳陽益、王玉懷、李忠潘,2008。東沙內環礁海域海流、水深與棲地 調查。海洋國家公園管理處委託辦理報告。
陳鎮東,1994。海洋化學。國立編譯館。共551頁。
葉雨青,2009。高屏海域顆粒態磷之輸出通量及埋藏效率。國立中山大學海洋地質及化學研究所碩士論文,共103頁。
鄭明修、邵廣昭、戴昌鳳、陳正平、林秀美、孟培傑,2005。東沙海域生態資源基礎調查研究。內政部營建署委託辦理報告。
蔡聖賢,2008。台灣東部黑潮海域氮與磷溶解態物種之分佈。國立中山大學海洋地質及化學研究所碩士論文,共95頁。
蔡儷珊,2007。南海北部沉降物質之地球化學研究。國立中山大學海洋地質及化學研究所碩士論文,共93頁。
羅文增、洪佳章、王玉懷,2011。東沙環礁潟湖生態系統研究-物理、化學水文與基礎生產力之時空變化探討。海洋國家公園管理處委託報告。共197頁。
網站:
東沙環礁公園網站
http://dongsha.cpami.gov.tw/tw/
海洋國家公園管理處網站
http://marine.cpami.gov.tw/
中華民國環保法規資料中心
http://law.epa.gov.tw/zh-tw/laws/309417667.html
英文部份:
Braman, R. S., and S. A. Hendrix (1989). Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium (III) reduction with chemiluminescence detection. Analytical Chemistry, 61: 2715-2718.
Chester, R. (1990). Marine Geochemistry. Blackwell Science Inc, Boston, 273-315.
Dai, C. F. (2005). Dong-sha Atoll in the South China Sea: Past, Present and Future. Proceedings of the 10th International Coral Reef Symposium, Okinawan, Japan, pp. 1587-1592.
Dortch, Q. and T. E. Whitledge (1992). Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions?. Continental Shelf Research, 12: 1293-1309.
Ho, C. R., F. C. Su., N. J. Kuo., C. C. Tsao., and Q. Zheng (2009).Internal wave observations in the northern South China Sea from satellite ocean color imagery, IEEE_OCEANS 2009-EUROPE:1-5.
Hedges, J. I. (1987). Organic matter in sea water. Nature, 330: 205-206
Hung, J. J., C. H. Chen., G. C. Gong., D. D. Sheu., and F. K. Shiah (2003). Distributions, stoichiometric patterns and cross-shelf exports of dissolved organic matter in the East China Sea. Deep Sea Research
Part II: Topical Studies in Oceanography, 50: 1127-1145.
Hung, J. J., and C. L. Hsu (2004). Present state and historical changes of trace metal pollution in Kaoping coastal sediments, southwestern Taiwan. Marine Pollution Bulletin, 49: 986-998.
Hung, J. J., P. L. Lin., and K. K. Liu (2000). Dissolved and particulate organic carbon in the southern East China Sea. Continental Shelf Research, 20: 545-569.
Hung, J. J., S. M. Wang., and Y. L. Chen (2007). Biogeochemical controls on distributions and fluxes of dissolved and particulate organic carbon in the Northern South China Sea. Deep Sea Research
Part II: Topical Studies in Oceanography, 50:1486-1503.
Liu, A. K., and M. K. Hsu (2004). Internal wave study in the South China Sea using synthetic aperture radar (SAR). International Journal of Remote Sensing, 25: 1261-1264.
Lűdmann, T., and H. K. Wong (1999). Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophysics, 311: 245-253.
Lűdmann, T., H. K. Wong., and P. Wang (2001). Plio–Quaternary sedimentation processes and neotectonics of the northern continental margin of the South China Sea. Mar. Geol, 172: 331-358
Karl, D. M., and G. Tien (1992). MAGIC: A sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnology and Oceanography, 37: 105-116.
Karydis, M. (2009). Eutrophication assessment of coastal waters based on indicators: a literature review. Global NEST, 4: 373-390.
Kemp, A. L. W. M., R. L. Thomas., C. I. Dell., and J. M. Jaquet (1976). Cultural impact on the geochemistry of sediments in lake. Eri. J. Fish Res. Bord. Can., 33: 440-462.
Mortlock, R. A., and P. N. Froelich (1989). A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Research Papers, 36: 1415-1426.
Murphy, J., and J. Riley (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27: 31-36.
Murry, D. W., J. W. Farrell., and V. Mckenna (1993). Biogenic sedimentation at ODP site 847, eastern equatorial Pacific during the past three million years, in Proc. ODP, Sci. Result, L. Mayor, N. Pisias and T. Janecek (eds.), v 138, College Station, TX (Ocean Drilling Program).
Redfield, A. C., B. H. Ketchum., and F. A. Richard (1963). The influence of organisms on the composition of sea water, In The sea, vol. 2. Hill, M. H. (ed.), Interscience, New York, pp. 26-77.
Ridal, J., and R. Moore (1990). A re-examination of the measurement of dissolved organic phosphorus in seawater. Marine Chemistry, 29: 19-31.
Strickland, J. D. H., and T. R. Parsons (1972). Inorganic micronutrients in sea water. In: A Practical Handbook of Seawater Analysis. Ed: Stevenson, J.C., Billingsley, L.W., Wigmore, R. H. Fisheries Research Board of Canada, Ottawa: 49-77.
Pai, S. C., and C. C. Yang (1990). Effects of acidity and molybdate concentration on the kinetics of the formation of the phosphoantimonylmolybdenum blue complex. Analytica Chimica Acta, 229: 115-120.
Taylor, S. (1964). Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28: 1273-1285.
Walsh, J. J. (1991).Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature, 350: 53-55.
Wang, Y. H., C. F. Dai., and Y. Y. Chen (2007). Physical and ecological processes of internal waves on an isolated reef ecosystem in the South China Sea. Geophysical Research Letters, 34: L18609.
Weiss (1974). Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry, 2:203-215.
Welschmeyer, N. A. (1994). Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39: 1985-1992.
Williams, P. J. leB. (1995). Evidence for the seasonal accumulation of
carbon-rich dissolved organic material, its scale in comparison with changes in particulate material and the consequential effect on net C/N assimilation ratios. Marine Chemistry, 51: 17-29.
Wu, J. (1994). Evaluation and models of Cenozoic sedimentation in the South China Sea. Tectonophysics, 225: 77-98
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code