Responsive image
博碩士論文 etd-1125114-111120 詳細資訊
Title page for etd-1125114-111120
論文名稱
Title
利用雙管柱離子交換法分析自然水中溶解態微量金屬鎘、鈷、銅、鎳及鋅之物種變化
Determination of Dissolved Trace Metal (Cd, Co, Cu, Ni and Zn) Partitioning in Natural Water by a Two-Column Ion Exchange Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-08-18
繳交日期
Date of Submission
2014-12-25
關鍵字
Keywords
兩性離子、有機配位基、物種變化、微量金屬、雙管柱離子交換法
two-column ion exchange method, organic ligands, zwitterionic, speciation, trace metals
統計
Statistics
本論文已被瀏覽 5810 次,被下載 1026
The thesis/dissertation has been browsed 5810 times, has been downloaded 1026 times.
中文摘要
本研究利用雙管柱(Chelex-100與AG MP-1樹脂)離子交換法進行各項模擬實驗,經由配製不同濃度之金屬與有機配位基(腐植酸與EDTA)之模擬溶液,探討溶解態微量金屬鎘、鈷、銅、鎳及鋅分別於不同pH值(5.5與8.0)、不同管柱順序(normal與reversed)之雙管柱與不同基質溶液中(淡水與海水)之物種變化,其中Chelex-100為陽離子交換樹脂,而AG MP-1為陰離子交換樹脂,可被Chelex-100樹脂滯留的金屬為Chelex-labile,可被AG MP-1樹脂滯留的金屬為AG MP-labile,不被Chelex-100與AG MP-1樹脂滯留的金屬為non-labile,可被Chelex-100與AG MP-1樹脂滯留的金屬為兩性離子。
研究結果顯示:(1)鎘、鈷、鎳及鋅大部份以Chelex-labile存在於淡水與海水模擬溶液中,而銅以Chelex-labile與AG MP-labile皆有相當量存在於模擬溶液中。但當管柱順序為reversed時,於海水模擬實驗結果中,鎘沒有滯留於Chelex-100管柱,且鎘只滯留少部份於AG MP-1管柱,顯示鎘之物種形態主要為non-labile (可能為CdCl2)。另外於淡水模擬實驗結果可看出,當溶液pH值為8.0時,腐植酸與金屬之複合程度比pH 5.5之溶液高;(2)模擬溶液中可被雙管柱滯留的有機複合物大部份為AG MP-1樹脂所滯留,少部份為Chelex-100樹脂所滯留。此外,non-labile之金屬中有部份為有機複合物;(3) AG MP-1樹脂滯留之金屬與腐植酸濃度呈現正相關,可觀察到金屬與腐植酸之複合程度:銅>鎳>鈷>鋅>鎘;(4)當模擬溶液中只存在金屬與EDTA時,於總金屬濃度未超過EDTA之鍵結容量的情況下,鎘(89~92%)、鈷(77~83%)、銅(92~96%)、鎳(88~93%)及鋅(80~83%)主要是以AG MP-labile (帶負電之金屬與EDTA複合物,MHEDTA-)存在於淡水模擬溶液中,少部份為non-labile (金屬與EDTA之電中性複合物,MH2EDTA),而鐵則是以AG MP-labile與non-labile皆有相當量存在於淡水模擬溶液中,其中於non-labile之總金屬中,相較於其他金屬,主要以鐵與EDTA之複合物(FeHEDTA)貢獻最多。於海水模擬溶液中,鎘、鈷、銅、鎳及鋅於Chelex-labile與non-labile皆有相當量,AG MP-labile所佔比例極低,而鐵則是以Chelex-labile、AG MP-labile與non-labile皆有相當量存在於海水模擬溶液中;(5) EDTA與金屬的複合能力比腐植酸與金屬的複合能力強。
將此方法應用於臺灣近岸海域海水與曾文溪河口水樣品,研究結果皆顯示,若比較不同管柱順序之結果,可觀察到當管柱順序為reversed時,有較多金屬為AG MP-labile,此結果與本研究模擬實驗皆印證,Chelex-100與AG MP-1樹脂皆可滯留有機與無機複合物。若比較有無調整pH值之差異,可得知調整pH值時由於水樣pH值降低,會導致有機質表面帶有負電荷減少,使得與金屬鍵結能力變弱,故有較少金屬物種形態為AG MP-labile,此結果於模擬實驗亦可看出pH值較高溶液中含有較多有機複合物。此外,河口水樣品研究結果顯示,當管柱順序為reversed時,pH 5.5之水樣中Chelex-labile的鎘(%)隨著鹽度增加而下降,將鹽度最低(0.7)和最高(31.8)結果分別與淡水和海水模擬實驗結果相比,結果皆顯示當管柱順序為reversed時,於淡水中,大部份鎘為Chelex-labile,但於海水中,鎘之物種主要為non-labile (推測為CdCl2)。
由此研究得知,金屬物種會因不同的基質溶液、操作模式(管柱順序)甚至是pH值而有所變化,因此,可被Chelex-100或AG MP-1樹脂滯留之金屬不一定為陽離子或是陰離子,其亦有可能滯留不同物種形態之金屬,故使用此項技術時須更加仔細定義操作條件與詮釋結果。
Abstract
In this study, experiments were carried out using a two-column (Chelex-100 and AG MP-1 resin) ion exchange technique, operated in different sequences (Chelex-AG MP1, normal phase, or AG MP1-Chelex, reversed phase). The model solutions, containing various concentrations of metal complexing agents (humic acid, HA and/or ethylenediaminetetraacetic acid, EDTA), of different pH were prepared in Milli-Q water and seawater, and then passed through the column sets, in order to investigate the variations in trace metal (Cd, Co, Cu, Ni and Zn) partitioning. Chelex-100 is a cation exchange resin, and AG MP-1 is an anion exchange resin. The fractions obtained were operationally defined as Chelex-labile, AG MP-labile, non-labile and zwitterionic (retained by both Chelex-100 and AG MP-1 resins, obtained by calculation).
Experimental results showed that: (1) Cd, Co, Ni and Zn were mostly present as Chelex-labile fraction, while Cu was equivalently present as Chelex-labile and AG MP-labile fractions. When the column sequence was reversed, Cd was not retained by Chelex-100 resin, and some can be retained by AG MP-1 resin in seawater medium, suggesting the predominant fraction of Cd being non-labile fraction (probably CdCl2). Solutions with higher pH (8.0) showed enhanced AG MP-labile metal fractions, indicating organic complexation, than those at pH 5.5 in freshwater medium; (2) Organic complexes in model solutions were retained mostly by AG MP-1 resin, with a small part being retained by Chelex-100 resin. In addition, part of non-labile fraction exhibited organic complex characteristics; (3) AG MP-labile metal concentrations and the concentration of humic acid had a positive correlation, indicating the complexation with humic acid for different metals is in the following order: Cu > Ni > Co > Zn > Cd; (4) When model solutions contain only trace metals and EDTA, and the total metal concentration was lower than the complexation capacity of EDTA, Cd (89~92%), Co (77~83%), Cu (92~96%), Ni (88~93%) and Zn (80~83%) were predominantly present as AG MP-labile fraction (negatively charged M-EDTA complexes, MHEDTA-) in freshwater model solutions, and a minor were present as non-labile fraction (neutrally charged M-EDTA complexes, MH2EDTA). Fe was equivalently present as AG MP-labile and non-labile fractions in model solutions, comparing with other metals, and accounted for most of the non-labile fraction (FeHEDTA) among the elements determined. In seawater model solutions, Cd, Co, Cu, Ni and Zn were present mostly as Chelex-labile and non-labile fractions. Fe was equivalently present as Chelex-labile, AG MP-labile and non-labile fractions in model solutions. It was found that metal-organic complexes could present in different terms of metal speciation in model solutions (MHEDTA-, MH2EDTA); (5) Metal-EDTA complexes showed stronger complexation than those of metal-HA.
This analytical scheme was applied to estuarine and coastal waters. Results showed that, column yields had comparable trends of differences between operation modes (normal and reversed), and between samples in natural pH (~8.0) and buffered (5.5) when compared with lab experiments. Metal concentrations in the coastal and estuarine waters were in general lower than those in model solutions prepared in the lab, thus the distributions of metal species derived from the dual-column preconcentration technique represent results closer to natural waters.
Results obtained in this study suggest that column yields vary when the dual-column preconcentration technique is operated under different column sequences. Modification of sample/solution, especially pH, results in shifts of metal species. Therefore, the use of technique with multiple preconcentration resins requires more careful definition of operating conditions and result interpretation.
目次 Table of Contents
致謝......i
摘要......ii
Abstract......iv
目錄......vii
圖目錄......ix
表目錄......xi
第一章 緒論......1
1.1 前言......1
1.2 研究目的......4
第二章 材料與方法......8
2.1 模擬實驗之設計原理......8
2.2 藥品配製......8
2.3 實驗流程......10
2.4 近岸海水與河口水採樣......10
2.4.1 採樣方法......10
2.4.2 樣品前處理......11
2.5 微量金屬分析方法......12
2.5.1 總溶解態微量金屬......12
2.5.2 溶解態微量金屬物種組成......12
2.6 分析金屬濃度......12
2.7 分析溶解態有機碳(dissolved organic carbon, DOC)......13
第三章 金屬於不同基質溶液、pH值與管柱順序之物種變化......18
3.1 腐植酸之鍵結容量......18
3.2 模擬溶液中金屬於不同pH值與不同管柱順序之物種形態......21
3.3 金屬與腐植酸之複合程度......24
3.4 金屬與EDTA之複合作用......27
3.5 金屬在不同配位基(腐植酸與EDTA)競爭後之物種形態......33
3.6 金屬於不同模擬條件下之物種變化......36
第四章 臺灣近岸海域與曾文溪水樣之應用......57
4.1 溶解態微量金屬於近岸海水之物種變化......57
4.2 溶解態微量金屬於河口水之物種變化......60
第五章 結論......74
參考文獻......75
中文部份......75
英文部份......76
參考文獻 References
中文部份
李敏達譯,1973年,均衡溶液化學。國立編譯館,共255頁。
李俊義,1990年,分析化學。科技圖書股份有限公司,共657頁
林永璋,2003年,以臭氧/紫外光程序去除乙二胺四乙酸之研究。國立中山大學環境工程研究所碩士論文,共101頁。

英文部份
Abbt-Braun, G., Schmiedel, U. and Frimmel, F. H., 1990. Elemental analysis of isolated fulvic acids from different origin. Vom Wasser 75: 59-73.
Apte, S. C. and Batley, G. E., 1995. Trace speciation of labile chemical species in natural waters and sediments : non-electrochemical approaches. Metal Speciation and Bioavailability in Aquatic Systems 259-306.
Baken, S., Degryse, F., Verheyen, L., Merckx, R. and Smolders, E., 2011. Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environmental Science and Technology 45 (7): 2584-2590.
Bedsworth, W. W. and Sedlak, D. L., 1999. Sources and environmental fate of strongly complexed nickel in estuarine waters: The role of ethylenediaminetetraacetate. Environmental science and technology 33 (6): 926-931.
Benedetti, M. F., Milne, C. J., Kinniburgh, D. G., Van Riemsdijk, W. H. and Koopal, L. K., 1995. Metal ion binding to humic substances: application of the non-ideal competitive adsorption model. Environmental Science and Technology 29 (2): 446-457.
Benoit, G., Hunter, K. S. and Rozan, T. F., 1997. Sources of trace metal contamination artifacts during collection, handling, and analysis of freshwaters. Analytical Chemistry 69 (6): 1006-1011.
Boggs, S., Livermore, D. G. and Seitz, M. G., 1985. Humic macromolecules in natural waters. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics 25 (4): 599-657.
Bowers, A. R. and Huang, C. P., 1986. Adsorption characteristics of metal-EDTA complexes onto hydrous oxides. Journal of colloid and interface science 110 (2): 575-590.
Bryan, S. E., Tipping, E. and Hamilton-Taylor, J., 2002. Comparison of measured and modelled copper binding by natural organic matter in freshwaters. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 133 (1): 37-49.
Clesceri, L. S., Greenberg, A. E. and Eaton, A. D., 1998. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC 20005: 5-48.
Das, A. K., de la Guardia, M. and Cervera, M. L., 2001. Literature survey of on-line elemental speciation in aqueous solutions. Talanta 55 (1): 1-28.
Donat, J. R., Lao, K. A. and Bruland, K. W., 1994. Speciation of dissolved copper and nickel in South San-Francisco Bay : a multi-method approach. Analytica Chimica Acta 284 (3): 547-571.
Dzombak, D. A. and Morel, F. M. M., 1990. Surface complexation modeling: hydrous ferric oxide. John Wiley and Sons.
Figura, P. and McDuffie, B., 1979. Use of Chelex resin for determination of labile trace metal fractions in aqueous ligand media and comparison of the method with anodic stripping voltammetry. Analytical Chemistry 51 (1): 120-125.
Figura, P. and McDuffie, B., 1980. Determination of labilities of soluble trace metal species in aqueous environmental samples by anodic stripping voltammetry and chelex column and batch methods. Analytical Chemistry 52 (9): 1433-1439.
Florence, T. M. and Batley, G. E., 1975. Removal of trace metals from seawater by a chelating resin. Talanta 22 (2): 201-204.
Florence, T. M. and Batley, G. E., 1976a. Trace metal speciation in seawater. I. Removal of trace metals by a chelating resin. Talanta 23 (3): 179-186.
Florence, T. M. and Batley, G. E., 1976b. Determination of the chemical forms of dissolved cadmium, lead and copper in seawater. Marine Chemistry 4 (4): 347-363.
Gordon, A. S., 1992. Isolation of compounds with affinity for copper from seawater using immobilized copper ion affinity chromatography. Marine chemistry 38 (1): 1-12.
Guthrie, J. W., Mandal, R., Salam, M. S. A., Hassan, N. M., Murimboh, J., Chakrabarti, C. L., Back, M. H. and Grégoire, D. C., 2003. Kinetic studies of nickel speciation in model solutions of a well-characterized humic acid using the competing ligand exchange method. Analytica chimica acta 480 (1): 157-169.
Hering, J. G. and Morel, F. M. M., 1988. Kinetics of trace metal complexation: role of alkaline-earth metals. Environmental science and technology 22 (12): 1469-1478.
Hering, J. G. and Morel, F. M. M., 1989. Slow coordination reactions in seawater. Geochimica et Cosmochimica Acta 53 (3): 611-618.
Jiann, K. T. and Presley, B. J., 2002. Preservation and determination of trace metal partitioning in river water by a two-column ion exchange method. Analytical Chemistry 74 (18): 4716-4724.
Jiann, K. T., Wen, L. S. and Gong, G. C., 2009. Distribution and behaviors of Cd, Cu, and Ni in the East China Sea surface water off the Changjiang estuary. TAO-Terrestrial, Atmospheric and Oceanic Sciences 20 (2): 433-443.
Jiann, K. T., Wen, L. S. and Santschi, P. H., 2005. Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Marine Chemistry 96 (3): 293-313.
Kari, F. G. and Giger, W., 1995. Modeling the photochemical degradation of ethylenediaminetetraacetate in the River Glatt. Environmental science and technology 29 (11): 2814-2827.
Kinniburgh, D. G., van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F. and Avena, M. J., 1999. Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A: Physicochemical and Engineering Aspects 151 (1): 147-166.
Knepper, T. P., 2003. Synthetic chelating agents and compounds exhibiting complexing properties in the aquatic environment. TrAC Trends in Analytical Chemistry 22 (10): 708-724.
Leenheer, J. A., Brown, G. K., MacCarthy, P. and Cabaniss, S. E., 1998. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia. Environmental science and technology 32 (16): 2410-2416.
Linnik, P. N., 2003. Complexation as the most important factor in the fate and transport of heavy metals in the Dnieper water bodies. Analytical and bioanalytical chemistry 376 (3): 405-412.
Liu, Y. and Ingle Jr, J. D., 1989. Automated two-column ion exchange system for determination of the speciation of trace metals in natural waters. Analytical Chemistry 61 (6): 525-529.
Mandal, R., Hassan, N. M., Murimboh, J., Chakrabarti, C. L., Back, M. H., Rahayu, U. and Lean, D. R., 2002. Chemical speciation and toxicity of nickel species in natural waters from the Sudbury area (Canada). Environmental science and technology 36 (7): 1477-1484.
Mantoura, R. F. C., Dickson, A. and Riley, J. P., 1978. The complexation of metals with humic materials in natural waters. Estuarine and Coastal Marine Science 6 (4): 387-408.
McElmurry, S. P., Long, D. T. and Voice, T. C., 2010. Simultaneous quantification of dissolved organic carbon fractions and copper complexation using solid-phase extraction. Applied Geochemistry 25 (5): 650-660.
Morel, F. M. M. and Price, N. M., 2003. The biogeochemical cycles of trace metals in the oceans. Science 300 (5621): 944-947.
Mota, A. M. and Correia dos Santos, M. M., 1995. Trace metal speciation of labile chemical species in natural waters: electrochemical methods. Metal speciation and bioavailability in aquatic systems 3: 205-257.
Nowack, B. and Sigg, L., 1996. Adsorption of EDTA and metal–EDTA complexes onto goethite. Journal of Colloid and Interface Science 177 (1): 106-121.
Nowack, B., Kari, F. G. and Krüger, H. G., 2001. The remobilization of metals from iron oxides and sediments by metal-EDTA complexes. Water, Air, and Soil Pollution 125 (1): 243-257.
Nowack, B., Kari, F. G., Hilger, S. U. and Sigg, L., 1996. Determination of dissolved and adsorbed EDTA species in water and sediments by HPLC. Analytical chemistry 68 (3): 561-566.
Nowack, B., Lützenkirchen, J., Behra, P. and Sigg, L., 1996. Modeling the adsorption of metal-EDTA complexes onto oxides. Environmental science and technology 30 (7): 2397-2405.
Pai, S. C., 1988. Pre-concentration efficiency of Chelex-100 resin for heavy metals in seawater. II: Distribution of heavy metals on a Chelex-100 column and optimization of the column efficiency by a plate simulation method. Analytica Chimica Acta 211 (1-2): 271-280.
Pai, S. C., Chen, T. C., Wong, G. T. and Hung, C. C., 1990. Maleic acid/ammonium hydroxide buffer system for preconcentration of trace metals from seawater. Analytical Chemistry 62 (7): 774-777.
Rashid, M. A. and King, L. H., 1969. Molecular weight distribution measurements on humic and fulvic acid fractions from marine clays on the Scotian Shelf. Geochimica et Cosmochimica Acta 33 (1): 147-151.
Remko, M. and Rode, B. M., 2006. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine. The Journal of Physical Chemistry A 110 (5): 1960-1967.
Riley, J. P. and Taylor, D., 1968. Chelating resins for the concentration of trace elements from sea water and their analytical use in conjunction with atomic absorption spectrophotometry. Analytica Chimica Acta 40: 479-485.
Rozan, T. F., Lassman, M. E., Ridge, D. P. and Luther, G. W., 2000. Evidence for iron, copper and zinc complexation as multinuclear sulphide clusters in oxic rivers. Nature 406 (6798): 879-882.
Santschi, P. H., Lenhart, J. J. and Honeyman, B. D., 1997. Heterogeneous processes affecting trace contaminant distribution in estuaries: the role of natural organic matter. Marine chemistry 58 (1): 99-125.
Sarathy, V. and Allen, H. E., 2005. Copper complexation by dissolved organic matter from surface water and wastewater effluent. Ecotoxicology and environmental safety 61 (3): 337-344.
Schmuckler, G., 1965. Chelating resins–their analytical properties and applications. Talanta 12 (3): 281-290.
Sedlak, D. L., Phinney, J. T. and Bedsworth, W. W., 1997. Strongly complexed Cu and Ni in wastewater effluents and surface runoff. Environmental science and technology 31 (10): 3010-3016.
Shafer, M. M., Hoffmann, S. R., Overdier, J. T. and Armstrong, D. E., 2004. Physical and kinetic speciation of copper and zinc in three geochemically contrasting marine estuaries. Environmental science and technology 38 (14): 3810-3819.
Shine, J. P. and Wallace, G. T., 1995. The formation of surface-active organic complexes of copper in coastal marine waters. Marine chemistry 51 (2): 145-157.
Tang, D., Warnken, K. W. and Santschi, P. H., 2002. Distribution and partitioning of trace metals (Cd, Cu, Ni, Pb, Zn) in Galveston Bay waters. Marine Chemistry 78 (1): 29-45.
Tang, Suo-Han and Zhu, Xiang-Kun, 2006. Separation of some elements using AG MP-1 Anion Exchange Resin [J]. Geological Journal of China Universities 12 (3): 398-403.
Tang, Suo-Han, Zhu, Xiang-Kun, Cai, Jun-Jun, Li, Shi-Zhen, He, Xue-Xian and Wang, Jin-Hui, 2006. Chromatographic separation of Cu, Fe and Zn using AG MP-1 Anion Exchange Resin for isotope determination by MC-ICPMS [J]. Rock and Mineral Analysis 25 (1): 5-8.
Tessier, A. and Turner, D. R. (Eds.), 1995. Metal speciation and bioavailability in aquatic systems. John Wiley and Sons.
Turner, A. and Millward, G. E., 1994. Partitioning of trace metals in a macrotidal estuary. Implications for contaminant transport models. Estuarine, Coastal and Shelf Science 39 (1): 45-58.
Turner, A., Nimmo, M. and Thuresson, K. A., 1998. Speciation and sorptive behaviour of nickel in an organic-rich estuary (Beaulieu, UK). Marine Chemistry 63 (1): 105-118.
van den Berg, C. M. G., 1982. Determination of copper complexation with natural organic ligands in seawater by equilibration with MnO2: I. Theory. Marine Chemistry 11 (4): 307-322.
Wen, L. S., Jiann, K. T. and Santschi, P. H., 2006. Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea. Marine Chemistry 101 (1): 104-129.‏
Wen, L. S., Santschi, P., Gill, G. and Paternostro, C., 1999. Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Marine Chemistry 63 (3): 185-212.
Wen, L. S., Santschi, P. H. and Tang, D., 1997. Interactions between radioactively labeled colloids and natural particles: Evidence for colloidal pumping. Geochimica et cosmochimica acta 61 (14): 2867-2878.
Wen, L. S., Stordal, M. C., Tang, D., Gill, G. A. and Santschi, P. H., 1996. An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Marine Chemistry 55 (1): 129-152.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code