Responsive image
博碩士論文 etd-1128112-160922 詳細資訊
Title page for etd-1128112-160922
論文名稱
Title
網印奈米氧化鋅與二氧化錫之一氧化碳感測器製作及特性分析
Fabrications and characterization of the CO sensor by screen printing SnO2 and ZnO nano particles
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
62
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-11-05
繳交日期
Date of Submission
2012-11-28
關鍵字
Keywords
二氧化錫、氧化鋅、網版印刷、熱處理、一氧化碳感測器
SnO2, ZnO, screen-printing, heat treatment, CO sensor
統計
Statistics
本論文已被瀏覽 5669 次,被下載 631
The thesis/dissertation has been browsed 5669 times, has been downloaded 631 times.
中文摘要
一氧化碳是無色無味且毒性可令人致死的危險氣體,在個人安全及工安意識的提高下為一般居家必備之感測器,近年來,一氧化碳感測器朝著更高的輕便性和敏感度發展。網版印刷製程在太陽能光電產業及生醫檢測上受到青睞,因其製程簡易、材料使用少、易大量生產和生產成本低,為競爭力非常高的製程技術;金屬氧化物半導體型氣體感測器具備了耐熱、耐腐蝕、材料成本低、和易於微小化之優點,鋅和錫元素是基礎材料中具代表性的模型電子材料,其氧化物氧化鋅與二氧化錫是一種新穎的寬能帶半導體材料,具有良好的光學、電性和氣體感測特性,在未來的半導體工業相當被重視。本論文使用ZnO和SnO2粉末經球磨研磨製成漿料後以網版印刷的製程於玻璃基板上製作ZnO和SnO2感測膜及量測用之銀電極,並探討感測膜之材料、熱處理溫度、熱處理時間和感測溫度對其一氧化碳感測能力的影響。
在本論文中,製作出奈米粒樣品以自行架設之實驗I-V量測設備即時量測樣品在空氣和一氧化碳環境下的電阻變化並探討其感測度和反應時間,也利用光學顯微鏡(OM)和掃描式電子顯微鏡(SEM)分析感測膜的表面形貌和微結構。
實驗結果發現感測膜在熱處理時隨時間增長會有不同的機制變化,在熱處理初期為樣品排膠形成氣孔的行為,若使用較高的溫度排膠,樣品會得到較佳的一氧化碳感測度,樹脂排除完畢後,熱處理的機制轉變為粉末的燒結。燒結時間持續越久,樣品孔隙融結減少,一氧化碳感測度也隨之下降。ZnO和SnO2製作出的感測膜在操作溫度300 oC會有較佳的一氧化碳感測能力,但隨使用時間增長其感測度衰減的速度也較快,在量測溫度250 oC下,感測度雖較低但經長時間使用後其感測度穩定乃至無衰減。以純ZnO材料組成的感測膜其一氧化碳感測度較純SnO2佳,且雖然隨著SnO2混合比例的增加其一氧化碳感測度會隨之下降,但可有效的減少長時間使用後其感測度的衰減,實驗也顯示了以網版印刷製作的ZnO及SnO2一氧化碳感測器在敏感度及壽命都具有優秀的特性。
Abstract
Due to the increased awareness of living and industrial safety, carbon monoxide detectors must be geared towards better portability and sensitivity. Metal oxide semiconductor sensors should possess advantages such as heat and corrosion resistance,
low cost materials, and ease of miniaturization. This thesis applied ball milled and powdered ZnO and SnO2 to manufacture into paste, then used the screen printing method deposited ZnO and SnO2 paste film and silver electrode on glass substrate. The influence
on sensing film materials, temperature, time of heat treatment, and temperature of measurement was investigated. The samples were fabricated and measured by setting up self-measurement apparatus. The data was analyzed the changes of resistance under different air and carbon monoxide environments. This is followed by analysis of both
surface topography and microstructure of the sensing film under OM and SEM.
Experiment reveals that samples under different annealing process yield different surface morphology and micro structure while at the beginning of the heat treatment, epoxy evaporates from the sample brought about porous structure. Annealing at higher temperature sample will have more rough surface and better sensitivity in detecting carbon monoxide. After epoxy removed, heat treatment mechanism is then switched to sinter ZnO and SnO2 powders. the longer the samples are sintered, the lower the sensitive.
Sensing films composited with ZnO and SnO2 will have better carbon monoxide sensitivity at 300oC but its sensitivity decays at a faster rate than samples working at 250 oC despite the slightly weaker sensitivity. Sensing films with pure ZnO will have higher sensitivity compared to pure SnO2 one. With the increase of SnO2 proportion, carbon monoxide sensitivities of detectors decreases, however, its life time can be improve significantly.
目次 Table of Contents
致謝 ………………………………………………… i
中文摘要 …………………………………………… ii
Abstract ……………………………………………iii
目錄 ………………………………………………… iv
表目錄 ……………………………………………… vi
圖目錄 ……………………………………………… vii
第一章 緒論 ………………………………………… 1
1.1 前言 ……………………………………………… 1
1.2 氣體感測器種類介紹 …………………………… 3
1.2.1 吸附質量型 …………………………………… 3
1.2.2 電化學型 ……………………………………… 3
1.2.3 光吸收型 ……………………………………… 3
1.2.4 觸媒燃燒型 …………………………………… 3
1.3 金屬氧化物半導體型氣體感測器 ……………… 7
第二章 文獻回顧與探討 …………………………… 8
2.1 材料簡介 ………………………………………… 8
2.1.1 氧化鋅材料特性簡介 ………………………… 8
2.1.2 二氧化錫材料特性簡介 ……………………… 8
2.2 半導體材料的導電機制 ………………………… 9
2.3 氧氣吸附機制與溫度對半導體導電性的影響 … 10
2.4 一氧化碳氣體感測機制 ………………………… 12
第三章 實驗方法及步驟 …………………………… 13
3.1 感測元件製作 …………………………………… 13
3.1.1 配置漿料 ……………………………………… 13
3.1.2 網版印刷成膜 ………………………………… 13
3.1.3 熱處理 ………………………………………… 13
3.1.4 電極製作 ……………………………………… 14
3.1.5 實驗樣品編號 ………………………………… 15
3.2 一氧化碳感測能力分析 ………………………… 17
第四章 結果與討論 ………………………………… 21
4.1 粉末粒徑對感測膜表面形貌和一氧化碳感測能力之影響 ……………………………………………………… 21
4.2 熱處理溫度與時間變化對感測膜表面形貌和一氧化碳感測能力影響及熱處理機制的變化 ………………… 24
4.3 SnO2與ZnO 混合比例和長時間使用的壽命測試對感測膜一氧化碳感測能力之影響 ……………………… 40
第五章 結論 ………………………………………… 47
第六章 參考文獻 …………………………………… 48
參考文獻 References
[1] National Fire Protection Association, “Fire Protection Handbook 2008 Edition”,
Massachusetts USA, (2008).
[2] V. Karagounis, L. Lun, C.C. Liu, “A Thick-Film Multiple Component Cathode Three-Electrode Oxygen Sensor,” IEEE Transaction on Biomedical Engineering, 33, 2, 108-112, (1986).
[3] Michael J. Tierney', Hyun-Ok L.Kim “Electrochemical Gas Sensor with Extremely
Fast Response Times,” Anal. Chem., 65, 3435-3440, (1993).
[4] B. Mizaikoff, K. Taga, R. Kellner, “Infrared fiber optic gas sensor for chlorofluorohydrocarbons,” Vibrational Spectroscopy, 8, 103-108, (1995).
[5] Chi-Hwan Han, Dae-Woong Hong, Il-Jin Kim, Jihye Gwak, Sang-Do Han, Krishan C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor,” Sensors and Actuators B, 128, 320-325, (2007)
[6] Maximilian Fleischer, Hans Meixner, “A selective CH4 sensor using semiconducting Ga2O3 thin films based on temperature switching of multigas reactions,” 24-25, 544-547, (1995).
[7] Xiangfeng Chu, Dongli Jiang, Yu Guo, Chenmou Zheng, “Ethanol gas sensor based on CoFe2O4 nano-crystallines prepared by hydrothermal method,” Sensors and Actuators B, 120, 177-181, (2006).
[8] Chia-Yen Lee, Che-Ming Chiang, Yu-Hsiang Wang, Rong-Hua Mac, “A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection,”
Sensors and Actuators B, 122, 503-510, (2007).
[9] Rajnish K. Sharma, M.C. Bhatnagar, G.L. Sharma, “Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor,” Sensors and Actuators B, 45, 209-215, (1997).
[10] L.G. Teoh, Y.M. Hon, J. Shieh, W.H. Lai, M.H. Hon, “Sensitivity properties of a novel NO2 gas sensor based on mesoporous WO3 thin film,” Sensors and Actuators B, 96, 219-225, (2003).
[11] Ling Chen, Shik Chi Tsang, “Ag doped WO3-based powder sensor for the detection of NO gas in air,” Sensors and Actuators B, 89, 68-75, (2003).
[12] Huixiang Tang, Mi Yan, Hui Zhang, Shenzhong Li, Xingfa Ma, Mang Wang, Deren Yang, “A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature,” Sensors and Actuators B, 114, 910-915, (2006).
[13] Zili Zhan, Denggao Jiang, Jiaqiang Xu, “Investigation of a new In2O3-based selective
H2 gas sensor with low power consumption,” Mater. Chem. Phys., 90, 250-254, (2005).
[14] Ji Haeng Yu, Gyeong Man Choi, “Electrical and CO gas sensing properties of ZnO–SnO2 composites,” Sensors and Actuators B, 52, 251-256, (1998).
[15] S.V. Jagtap, A.V. Kadu, V.S. Sangawar, S.V. Manoramac, G.N. Chaudhari, “H2S sensing characteristics of La0.7Pb0.3Fe0.4Ni0.6O3 based nanocrystalline thick film gas sensor,” Sensors and Actuators B, 131, 290-294, (2008).
[16] Ü. Özgür, I. Alivov, Ya, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, and H. Morkoçd, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., 98, 041301, (2005).
[18] D. Look, “Recent advances in ZnO materials and devices,” Mate. Sci. Eng., B 80, 383, (2001).
[19] T. Seiyama, A. Kato, K. Fujishi, M. Nagatani, “A New Detector for Gaseous Components Using Semiconductive Thin Films,” Analytical Chemistry, 34, No.11, 1502-1503, (1962)
[20] N. Taguchi, Gas Detection Semiconductor Element, Japanese patent, 45-38200, (1970).
[21] 施敏, “半導體元件物理與製作技術,” 國立交通大學出版社, 第二版, (2002).
[22] M. Franke, T. Koplin, U. Simon, “Metal and Metal Oxide Nanoparticles in Chemiresistors: Does the Nanoscale Matter?,” Small, 2, 36-50, (2006).
[23] S.C. Chang, “Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements,” J. Vac. Sci. Technol., 17, 366, (1980).
[24] V. Khranovskyy, J. Eriksson, A.L. Spetz, R. Yakimova, L. Hultman, “Effect of oxygen exposure on the electrical conductivity and gas sensitivity of nanostructured ZnO films,” Thin Solid Films, 517, 2073-2078, (2009).
[25] C.X. Wang, L.W. Yin, L.Y. Zhang, D. Xiang, R. Gao, “Metal Oxide Gas Sensors: Sensitivity and Influencing Factors,” Sensors, 10, 2088-2106, (2010).
[26] L.H. Quang, S.J. Chua, K.P. Loh, E. Fitzgerald, “The effect of post-annealing treatment on photoluminescence of ZnO nanorods prerared by hydrothermal synthesis,” Journal of Crystal Growth, 287, 157–161, (2006).
[27] T. Pagnier, M. Boulova, A. Galerie, A. Gaskov, G. Lucazeau, “Reactivity of SnO2-CuO nanocrystalline materials with H2S: a coupled electrical and Raman
spectroscopic study,” Sensors and Actuators B, 71, 134-139, (2000).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code