Responsive image
博碩士論文 etd-1224112-202034 詳細資訊
Title page for etd-1224112-202034
論文名稱
Title
低維度應力對寬能隙單晶半導體的機性和光電特性影響
Mechanical and Optoelectronic Response of Wide Band Gap Semiconductors under Low Dimensional Stress
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
217
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-12-12
繳交日期
Date of Submission
2012-12-24
關鍵字
Keywords
氧化鋅、氮化鎵、奈米壓痕、陰極射線光譜、拉曼光譜
ZnO, GaN, Nanoindentation, CL, Raman, FIB
統計
Statistics
本論文已被瀏覽 5758 次,被下載 352
The thesis/dissertation has been browsed 5758 times, has been downloaded 352 times.
中文摘要
近數十年來,寬能隙氧化鋅與氮化鎵半導體引起科學界廣泛與熱烈的興趣。主因於其優異的室溫物理性質,諸如:直接能隙、高電子束縛能、良好的化學與熱穩定性、優異的熱傳導、高電子移動能力與其光學透明性。他們被廣泛的利用於雷射、生物偵測器、壓力發電機、奈米機電系統,並被視為取代現有平面顯示器核心元件之潛力材料。然而在製造元件或封裝過程中,外在的接觸應力會造成材料內部的殘留應力或增加材料缺陷濃度,造成光電或壓電性元件其效能降低。為了確保以及改善元件品質,更深入的瞭解氧化鋅與氮化鎵,在施加應力的情況下其光電性質與機械性質的反應是必需的。

本研究主要是先利用彈性常數去估算理論楊氏模數與波松比,再將理論波松比帶入實驗結果,將實驗楊氏模數與理論值做確認,確保波松比在更進一步計算中準確。此外,利用奈米壓痕實驗探討奈米尺度下的楊氏模數與硬度,並與微奈米尺度的一維壓應力實驗結果做比較。再將實驗結果帶入Hertzian彈性模型,得出破壞降伏強度與臨界剪切應力。實驗結果與理論值吻合,在奈米與微奈米尺度下均無應變速率對機械性質影響,非極性面與極性面比較結果發現,非極性面有較低的硬度。利用掃瞄式與穿透式電子顯微鏡做塑性變形的圍觀組織分析結果得知,在二維奈米壓痕與一維壓應力測試中都沒有發現相變化、雙晶與裂縫。差排滑移為主要變形機制,變形系統為錐面。在熱處理、光電性質與幾何形狀部分相關研究,我們發現但氧化鋅在常壓900oC下加熱一小時,可有效提升晶體表面品質,減少因離子殖入造成非晶層的厚度,而陰極射線光譜藍光帶之強度也增加了1.5倍。拉曼光譜分析發現長在藍寶石基版的氮化鎵薄膜中含有的殘留應力,可以經由高表面/體積比的幾何形狀得到釋放。釋放殘留應力後,由高斯分佈分析拉曼光譜E2波峰發現有紅位移的現象。

本論文試圖對六方對稱之氧系與氮系發光半導體材料提出廣泛的研究,對於日後更深入的探討理論機械性質、變形機制、缺陷分析、殘留應力、極性與非極性、熱處理、發光性質、微觀結構、幾何形狀與尺寸效應,提出理論與實驗基礎。最後,我們比較了四種常見半導體材料的機械性質與破壞機制,並對於日後的實驗發展提出粗略的方向。
Abstract
Wide band gap semiconductors ZnO/GaN attracted a great deal of interests for decade, due to their wide direct band, high electron binding energy, excellent chemical and thermal stability, good heat conductivity and capability, high electron mobility and transparent properties at room temperature. They have many potential applications such as laser, biosensor, piezoelectric power generator, nano-electromechanical systems and flat panel field emission displays. However, unexpected contact loading during processing or packaging may induce residual stresses and/or an increase in defect concentration in ZnO/GaN wafer or thin film, causing possible degenerated reliability and efficient operation of the piezoelectric and photonic device. To ensure and improve the performance of devices based on ZnO/GaN, a better understanding of the mechanical/optoelectronic response under different processing and loading conditions and even the measuring methods are necessary.

In this thesis, our aim is to reveal a comprehensive investigation of the mechanical responses on polar/non-polar GaN/ZnO single crystal under low dimensional stress. We try to provide the fundamental theoretical and experimental studies for further application and researches, such as tension testing, residual stress, low temperature cathodoluminescence and Raman spectroscopy analysis.

In this study, the theoretical Young’s modulus and Poisson ratio of ZnO/GaN are extracted from elastic constants for comparison and further estimation. The nano-scaled mechanical properties, such as Young’s modulus, hardness and yield stress, are identified by using the nanoindentation system. The experimental values were fitting by the Hertzian contact theory. The results are in good agreement with the theoretical predictions. No significant strain rate influence is observed over the strain rate from 1x10-2 s-1 to 1x10-4 s-1. The comparisons of mechanical properties between the polar and non-polar planes of ZnO are firstly examined. The results reveal that the non-polar planes are softer than the polar plane. Both a-plane and m-plane ZnO have lower hardness and yield stress than c-plane ZnO. The microstructure and deformation mechanism are analyzed by using X-TEM and SEM. No pop-out or slope changing was found in their load-displacement curves, suggesting no phase transformation, twining or crack domain deformation occurred under microcompression and nanoindentation testing. Taking all considerations for the higher resulting Schmid factor and lower Burgers’ vector, the most possible slip system for c-plane hexagonal structures is the pyramidal plane. The a-plane has shorter burger’s vector on the slip plane which leads the lower yield stress than c-plane.

To erase the effect of FIB induced Ga ion implantation, the c-plane ZnO was annealed at 900oC for 1 hour. We found that the yield stress under microcompression decreases and the intensity of the cathodoluminescence spectrum increases after the annealing process. This result indicates that the thermal treatment is a good way to refine the crystal quality and decrease the defects density. The E2 peak of Raman spectrometer exhibits high residual compression stress constrain in the c-plane GaN thin film. Due to the high surface/volume ratio of pillar, nil residual stress remains in the GaN pillar after the FIB milling process. Even after the yield point, nil residual stress remains in the c-GaN pillar. Results indicate that the one dimensional geography is a good way to erase residual stress.
目次 Table of Contents
Content I
List of tables V
List of figures VII
Abstract XIV
中文摘要 XVI
Chapter 1. Introduction 1
1.1. GaN 1
1.2. ZnO 2
1.3. Other wide band gap semiconductors 3
1.4. Motivations 4
Chapter 2. Background and literature review 6
2.1. The direct and indirect band gap of optoelectronic materials 6
2.2. The polar, semi-polar and non-polar plane of the wurtzite structure 6
2.3. The substrates and buffer layer of hetero-epilayer GaN 7
2.3.1. Substrates 9
2.3.2. Buffer layer 12
2.4. The methods of fabricating single crystal thin films 13
2.4.1. Chemical vapor deposition (CVD) 14
2.4.2. Metal-organic chemical-vapor deposition (MOCVD) 15
2.5. Basic properties of the hexagonal wurtzite structure 15
2.5.1. Group theory of hexagonal systems 15
2.5.2. Characters of dislocations in the wurtzite structure 17
2.6. Introduction of nanoindentation testing 17
2.6.1. Mechanical properties 17
2.6.2. Deformation mechanisms 20
2.7. Introduction of microcompression testing 23
2.7.1. Micropillar preparation 23
2.7.2. Force loading and measurement 25
2.7.3. Parameters of microcompression tests 26
2.7.4. Microscale characterization of mechanical properties 28
2.8. Thermal treatment of ion implanted semiconductors 30
2.8.1. Defects and ion implantation 31
2.8.2. Defects recovery 33
2.9. Luminescence properties of semiconductors 35
2.9.1. Raman spectrum 36
2.9.2. Luminescence spectrum 38
Chapter 3. Experimental procedures 41
3.1. Sample preparation 41
3.2. Nanoindentation testing 42
3.3. Microcompression testing 42
3.3.1. Microcompression sample fabrication using FIB 43
3.3.2. Thermal treatment 43
3.3.3. Microcompression test using the nanoindentation system 44
3.3.4. TEM sample fabrication using FIB 44
3.4. Property measurement and analyses 45
3.4.1. X-Ray diffraction analyses 45
3.4.2. Scanning electron microscopy (SEM) analysis 46
3.4.3. Transmission electronic microscopy (TEM) analyses 46
3.4.4. Raman spectrometer analyses 47
3.4.5. Cathodoluminescence (CL) spectrum analyses 48
Chapter 4. Experimental results 49
4.1. Structure quality identifications 49
4.1.1. X-ray diffraction analyses 49
4.1.2. EBSD analyses 49
4.1.3. Theoretical values calculations 50
4.2. Nanoindentation testing 55
4.2.1. ZnO 55
4.2.2. GaN 58
4.3. Microcompression testing 58
4.3.1. ZnO 58
4.3.2. GaN 60
4.3.3. Raman spectrometer analyses 61
4.4. SEM observations 62
4.5. XTEM analyses 63
4.6. Cathodoluminescence analysis 64
Chapter 5. Discussion 67
4.7. Low dimensional stress comparison 67
4.7.1. Theoretical and experimental results 67
4.7.2. Nanoindentation testing 68
4.7.3. Microcompression testing 69
4.7.4. Low dimensional measurements 71
4.8. Deformation mechanisms 72
4.9. Thermal treatment effects 73
4.10. Polarity effects 74
4.11. Hexagonal and cubic structure influence 74
4.11.1. Elasticity 75
4.11.2. Deformation mechanisms 76
4.11.3. Deformation energy analysis 78
Chapter 6. Conclusions 80
Chapter 7. Prospective and future work 84
References 85
Tables 101
Figures 121
參考文獻 References
[1] S. Gradecak, F. Qian, Y. Li, H. G. Park and C. M. Lieber, Appl. Phys. Lett., 87 (2005) 173111.
[2] J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang and R. J. Saykally, Nature Mater., 1 (2002) 106.
[3] H. Amano, I. Akasaki, K. Hiramatsu, N. Koide and N. Sawaki, Thin Solid Films, 163 (1988) 415.
[4] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, J. Cryst. Growth, 98 (1989) 209.
[5] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, J. J. Appl. Phys. Lett., 28 (1989) L2112.
[6] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Appl. Phys. Lett., 48 (1986) 353.
[7] S. Nakamura, J. J. Appl. Phys. Lett., 30 (1991) L1705.
[8] S. Nakamura, T. Mukai, M. Senoh and N. Iwasa, J. J. Appl. Phys. Lett., 31 (1992) L139.
[9] S. Hasegawa, S. Nishida, T. Yamashita and H. Asahi, J. Ceramic Proc. Res., 6 (2005) 245.
[10] C. H. Hong, D. Pavlidis, K. Hong and K. Wang, Mater. Sci. and Eng. B-Solid State Mater. for Adv. Tech., 32 (1995) 69.
[11] H. Morkoc, S. Strite, G.B. Gao, M. E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys., 76 (1994) 1363.
[12] J. Narayan, K. Dovidenko, A. K. Sharma and S. Oktyabrsky, J. Appl. Phys., 84 (1998) 2597.
[13] F. M. Morales, D. Gonzalez, J. G. Lozano, R. Garcia, S. Hauguth-Frank, V. Lebedev, V. Cimalla and O. Ambacher, Acta Mater., 57 (2009) 5681.
[14] S. R. Jian, G. J. Chen, J. S. C. Jang and Y. S. Lai, J. Alloy Compd., 494 (2010) 219.
[15] H. Lahreche, P. Vennegues, M. Vaille, B. Beaumont, M. Laugt, P. Lorenzini and P. Gibart, Semi. Sci. and Tech., 14 (1999) L33.
[16] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho and H. Morkoc, J. Appl. Phys., 98 (2005) 041301.
[17] Y. Z. Zhu, G. D. Chen, H. G. Ye, A. Walsh, C. Y. Moon and S. H. Wei, Phys. Rev. B, 77 (2008) 245209.
[18] Fujita In., Kyoto Japan, http://www.iic.kyoto-u.ac.jp/sozo/fujita/.
[19] J. Michler, K. Wasmer, S. Meier, F. Ostlund and K. Leifer, Appl. Phys. Lett., 90 (2007) 043123.
[20] C. H. Chien, S. R. Jian, C. T. Wang, J. Y. Juang, J. C. Huang and Y. S. Lai, J. of Phys. D-Appl. Phys., 40 (2007) 3985.
[21] H. Zhang, B. E. Schuster, Q. Wei and K. T. Ramesh, Scr. Mater., 54 (2006) 181.
[22] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog, Nature, 406 (2000) 865.
[23] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn and K. H. Ploog, Phys. Rev. B, 65 (2002) 075202.
[24] P. Misra, O. Brandt, H. T. Grahn, H. Teisseyre, M. Siekacz, C. Skierbiszewski and B. Lucznik, Appl. Phys. Lett., 91 (2007) 141903.
[25] T. Flissikowski, O. Brandt, P. Misra and H. T. Rahn, J. Appl. Phys., 104 (2008) 063507.
[26] R. Navamathavan, Y. T. Moon, G. S. Kim, T. G. Lee, J. H. Hahn and S. J. Park, Mater. Chem. and Phys., 99 (2006) 410.
[27] X. J. Ning, F. R. Chien, P. Pirouz, J. W. Yang and M. A. Khan, J. Mater. Res., 11 (1996) 580.
[28] B. N. Sverdlov, G. A. Martin, H. Morkoc and D. J. Smith, Appl. Phys. Lett., 67 (1995) 2063.
[29] A. J. Slifka, B. J. Filla and J. M. Phelps, J. of Res. of the Natl. In. of Stand. and Tech., 103 (1998) 357.
[30] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, Prog. in Mater. Sci., 50 (2005) 293.
[31] Y. Dikme, G. Gerstenbrandt, A. Alam, H. Kalisch, A. Szymakowski, M. Fieger, R. H. Jansen, M. Heuken, J. Cryst. Growth, 248 (2003) 578.
[32] D. M. Follstaedt, J. Han, P. Provencio and J. G. Fleming, Mrs Inter. J. of Nitride Semi. Res., 4 (1999) art. no.-G3.72.
[33] K. Y. Zang, L. S. Wang, S. J. Chua and C. V. Thompson, J. Cryst. Growth, 268 (2004) 515.
[34] J. Bai, T. Wang, P. J. Parbrook, K. B. Lee and A. G. Cullis, J. Cryst. Growth, 282 (2005) 290.
[35] I. Ahmad, M. Holtz, N. N. Faleev and H. Temkin, J. Appl. Phys., 95 (2004) 1692.
[36] H. J. Ko, Y. F. Chen, Z. Zhu, T. Hanada and T. Yao, J. Cryst. Growth, 208 (2000) 389.
[37] R. J. Lad, P. D. Funkenbusch and C. R. Aita, J. of Vac. Sci. & Tech., 17 (1980) 808.
[38] W. C. Shih and M. S. Wu, J. Cryst. Growth, 137 (1994) 319.
[39] D. K. Hwang, K. H. Bang, M. C. Jeong and J. M. Myoung, J. Cryst. Growth, 254 (2003) 449.
[40] A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa and H. Koinuma, M. Kawasaki, Appl. Phys. Lett., 75 (1999) 2635.
[41] R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis and K. A. Jones, Appl. Phys. Lett., 73 (1998) 348.
[42] S. Yoshida, S. Misawa, S. Gonda, J. of Vac. Sci. Tech. B, 1 (1983) 250.
[43] M. J. Paisley, Z. Sitar, J. B. Posthill, R. F. Davis, J. of Vac. Sci. Tech. A Vac. Surfaces and Films, 7 (1989) 701.
[44] S. Strite, J. Ruan, Z. Li, A. Salvador, H. Chen, D. J. Smith, W. J. Choyke and H. Morkoc, J. of Vac. Sci. & Tech. B, 9 (1991) 1924.
[45] T. Lei, M. Fanciulli, R. J. Molnar, T. D. Moustakas and R. J. Graham, J. Scanlon, Appl. Phys. Lett., 59 (1991) 944.
[46] Y. F. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Q. Zhu and T. Yao, J. Appl. Phys., 84 (1998) 3912.
[47] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett., 15 (1969) 327.
[48] S. Nakamura, Y. Harada and M. Seno, Appl. Phys. Lett., 58 (1991) 2021.
[49] G. Springholz, N. Frank and G. Bauer, Thin Solid Films, 267 (1995) 15.
[50] A. G. Thompson, Mater. Lett., 30 (1997) 255.
[51] R. Abbaschian, L. Abbaschian and R. E. Hill, Physical Metallurgy Principles, CL Engineering, Boston (2009) 142.
[52] W. C. Oliver and G. M. Pharr, J. Mater. Res., 7 (1992) 1564.
[53] W. G. Mao, Y. G. Shen and C. Lu, J. Eur. Ceram. Soc., 31 (2011) 1865.
[54] T. H. Sung, J. C. Huang, J. H. Hsu and S. R. Jian, Appl. Phys. Lett., 97 (2010) 171904.
[55] Z. Takkouk, N. Brihi, K. Guergouri and Y. Marfaing, Phys. B-Condensed Matt., 366 (2005) 185.
[56] S. Basu and M. W. Barsoum, J. Mater. Res., 22 (2007) 2470.
[57] J. E. Bradby, S. O. Kucheyev, J. S. Williams, C. Jagadish, M. V. Swain, P. Munroe and M. R. Phillips, Appl. Phys. Lett., 80 (2002) 4537.
[58] K. L. Johnson, Contact Mechanics, Cambridge University Press, UK Cambrige, (1985).
[59] I. R. Shein, V. S. Kiiko, Y. N. Makurin, M. A. Gorbunova and A. L. Ivanovskii, Phys. Solid State, 49 (2007) 1067.
[60] T. H. Sung, J. C. Huang, J. H. Hsu, S. R. Jian and T. G. Nieh, Appl. Phys. Lett., 100 (2012) 211903.
[61] M. D. Uchic, D. M. Dimiduk, J. N. Florando and W. D. Nix, Science, 305 (2004) 986.
[62] M. D. Uchic and D. A. Dimiduk, Mater. Sci. Eng. A, 400 (2005) 268.
[63] K. J. Hemker and W. N. Sharpe, Annual Review of Mater. Res., 37 (2007) 93.
[64] D. M. Dimiduk, M. D. Uchic and T. A. Parthasarathy, Acta Mater., 53 (2005) 4065.
[65] J. R. Greer, W. C. Oliver and W. D. Nix, Acta Mater., 53 (2005) 1821.
[66] C. A. Volkert and E. T. Lilleodden, Phil. Mag., 86 (2006) 5567.
[67] M. D. Uchic, D. M. Dimiduk, R. Wheeler, P. A. Shade and H. L. Fraser, Scr. Mater., 54 (2006) 759.
[68] B. E. Schuster, Q. Wei, H. Zhang and K. T. Ramesh, Appl. Phys. Lett., 88 (2006) 103112.
[69] H. Bei, S. Shim, E. P. George, M. K. Miller, E. G. Herbert and G. M. Pharr, Scr. Mater., 57 (2007) 397.
[70] V. A. Coleman, H. H. Tan, C. Jagadish, S. O. Kucheyev and J. Zou, Appl. Phys. Lett., 87 (2005) 231912.
[71] T. S. Jeong, M. S. Han, J. H. Kim, C. J. Youn, Y. R. Ryu and H. W. White, J. Cryst. Growth, 275 (2005) 541.
[72] M. A. Reshchikov and H. Morkoc, J. Appl. Phys., 97 (2005) 061301.
[73] F. Tuomisto, K. Saarinen, D. C. Look and G. C. Farlow, Phys. Rev. B, 72 (2005) 085206.
[74] S. Limpijumnong, C.G. Van de Walle, Phys. Rev. B, 69 (2004) 035207.
[75] Z. Q. Chen, A. Kawasuso, Y. Xu, H. Naramoto, X. L. Yuan, T. Sekiguchi, R. Suzuki and T. Ohdaira, J. Appl. Phys., 97 (2005) 013528.
[76] A. Audren, A. Hallen, M. K. Linnarsson and G. Possnert, Nucl. Instrum. Meth. in Phys. Res., 268 (2010) 1842.
[77] X. W. Ke, F. K. Shan, Y. S. Park, Y. J. Wang, W. Z. Zhang, T. W. Kang and D. J. Fu, Surf. Coat. Technol., 201 (2007) 6797.
[78] M. Peres, J. Wang, M. J. Soares, A. Neves, T. Monteiro, E. Rita, U. Wahl and J. G. Correia, E. Alves, Superlattices and Microstructures, 36 (2004) 747.
[79] E. Schlenker, A. Bakin, H. Schmid, W. Mader, S. Sievers, M. Albrecht, C. Ronning, S. Muller, M. Al-Suleiman, B. Postels, H. H. Wehmann, U. Siegner and A. Waag, Nanotechnology, 18 (2007) 125609.
[80] K. Lorenz, E. Alves, E. Wendler, O. Bilani, W. Wesch and M. Hayes, Appl. Phys. Lett., 87 (2005) 191904.
[81] J. C. Yang, H. G. Na, M. A. Kebede, H. S. Kim and H. W. Kim, J. Cryst. Growth, 312 (2010) 1199.
[82] C. A. Arguello, D. L. Rousseau and S. P. S. Porto, Physical Review, 181 (1969) 1351.
[83] T. Suski, P. Perlin, H. Teisseyre, M. Leszczynski, I. Grzegory, J. Jun, M. Bockowski, S. Porowski and T. D. Moustakas, Appl. Phys. Lett., 67 (1995) 2188.
[84] L. Bergman, M. Dutta, C. Balkas, R. F. Davis, J. A. Christman, D. Alexson and R. J. Nemanich, J. Appl. Phys., 85 (1999) 3535.
[85] I. D. Wolf, Soc. Sci. Tech., 11 (1996) 139.
[86] C. R. Das, S. Dhara, H. C. Hsu, L. C. Chen, Y. R. Jeng, A. K. Bhaduri, B. Raj, K. H. Chen and S. K. Albert, J. of Raman Spectrosc., 40 (2009) 1881.
[87] T. Azuhata, T. Sota, K. Suzuki and S. Nakamura, J. Phys.-Condes. Matter, 7 (1995) L129.
[88] S. H. Margueron, P. Bourson, S. Gautier, A. Soltani, D. Troadec, J. C. De Jaeger, A. A. Sirenko and A. Ougazzaden, J. Cryst. Growth, 310 (2008) 5321.
[89] C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. L. Weber, M. Rubin, E. R. Weber, M. D. Bremser and R. F. Davis, Phys. Rev. B, 54 (1996) 17745.
[90] P. Puech, F. Demangeot, J. Frandon, C. Pinquier, M. Kuball, V. Domnich and Y. Gogotsi, J. Appl. Phys., 96 (2004) 2853.
[91] S. R. Jian, I. J. Teng and J. M. Lu, Nanoscale Res. Lett., 3 (2008) 158.
[92] V. A. Coleman, J. E. Bradby, C. Jagadish and M. R. Phillips, Appl. Phys. Lett., 89 (2006) 3.
[93] M. A. Reshchikov, H. Morkoc, S. S. Park and K. Y. Lee, Appl. Phys. Lett., 78 (2001) 3041.
[94] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish and M. V. Swain, Appl. Phys. Lett., 80 (2002) 956.
[95] V. A. Coleman, J. E. Bradby, C. Jagadish, P. Munroe, Y. W. Heo, S. J. Pearton, D. P. Norton, M. Inoue and M. Yano, Appl. Phys. Lett., 86 (2005) 3.
[96] MTI In., http://mtixtl.com.
[97] R. M. Langford and A. K. Petford-Long, J. Vac. Sci. Techn. Intl. J. Dev. Vac., 19 (2001) 2186.
[98] V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky and R. A. Evarestov, Phys. Rev. B, 58 (1998) 12899.
[99] S. R. Jian, J. Alloy. Compd., 494 (2010) 214.
[100] H. Ni and X. D. Li, Nanotechnology, 17 (2006) 3591.
[101] X. D. Yan, M. Dickinson, J. P. Schirer, C. W. Zou and W. Gao, J. Appl. Phys., 108 (2010) 056101.
[102] A. V. Desai and M. A. Haque, Sens. Act. A Phys., 134 (2007) 169.
[103] F. Xu, Q. Q. Qin, A. Mishra, Y. Gu and Y. Zhu, Nano Res., 3 (2010) 271.
[104] X. D. Bai, P. X. Gao, Z. L. Wang and E. G. Wang, Appl. Phys. Lett., 82 (2003) 4806.
[105] L. J. Ming, Master thesis, National SunYat-Sen University, (2006).
[106] D. S. Huang, Master thesis, National SunYat-Sen University, (2008).
[107] B. Rafferty and L. M. Brown, Phys. Rev. B, 58 (1998) p. 10326.
[108] J. E. Ayers, Heteroepitaxy of Semiconductors, CRC Press, Boca Raton, (2006) 105.
[109] H. O. Pierson, Handbook of Chemical Vapor Deposition, Noyes Publications, N. J., Norwich, NY, (1999) 20.
[110] S. R. Jian, T. H. Sung, J. C. Huang and J. Y. Juang, Appl. Phy. Lett., 101 (2012) 151905.
[111] Y. Androussi, G. Vanderschaeve and A. Lefebvre, Philos. Mag. A 59 (1989) 1189.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code