Responsive image
博碩士論文 etd-1227112-113452 詳細資訊
Title page for etd-1227112-113452
論文名稱
Title
渦輪發電機組機電系統之線性等效電路之研究
Study of Linear Equivalent Circuits of Electromechanical Systems for Turbine Generator Units
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-12-21
繳交日期
Date of Submission
2012-12-27
關鍵字
Keywords
蒸氣渦輪發電機、機電類比、微渦輪發電機、扭轉振動、風力渦輪發電機、電弧爐、水力渦輪發電機
Torsional Vibration, Electromechanical Analogy, Electric Arc Furnace, Hydro Turbine Generator, Wind Turbine Generator, Steam Turbine Generator, Micro Turbine Generator
統計
Statistics
本論文已被瀏覽 5823 次,被下載 523
The thesis/dissertation has been browsed 5823 times, has been downloaded 523 times.
中文摘要
本論文應用機電系統間之動態方程式的相似性,將蒸汽、燃氣、風力、水力等各式渦輪機模型轉換為等效電路模型,並由圓柱轉子同步發電機及永磁式同步發電機之動態方程式推導出發電機與渦輪機等效電路之介面,因而將發電機電路模型與渦輪機等效電路模型整合為一個完整之機電整合等效電路模型(戴維寧電路模型或諾頓電路模型),此機電整合等效電路模型有助於了解及分析渦輪機組機電間之能量轉換、傳輸及交互作用。本論文並實際以一小型燃氣渦輪機組及大型蒸汽渦輪機組為例,將其機械與電氣參數代入此機電整合電路模型,並利用頻率掃描法及特徵值法分別求出其機電整合後的振模頻率,結果發現除了有增加一組機電系統間耦合的振模頻率之外,部分低頻振模頻率還會有輕微偏移現象,且小型機組的偏移量比大型機組還大。最後本論文利用機電整合等效電路模型,延伸探討電弧爐運轉對小型發電機組扭轉振動的影響,以一實際鋼鐵廠為對象,探討電弧爐運轉產生之巨量的諧波電流和不平衡電流對同
一工廠內的小型渦輪發電機組造成的轉軸扭轉振動,並設計一機械濾波器加裝於轉軸上,藉此來抑制此振動現象,藉由模擬證明,這濾波器對於減小轉軸扭轉轉矩具有良好效果。
Abstract
The thesis utilizes the analogy in dynamic equations between a mechanical and an electrical system to convert the steam-turbine, micro-turbine, wind-turbine and hydro-turbine generator mechanical model to equivalent electrical circuit models respectively. And based on the round rotor type and permanent magnetic rotor type synchronous generators’ dynamic equations, as well as their electromagnetic torque equations, the equivalent electrical interface circuits were derived respectively. By using the interface circuit, the circuit model of synchronous generator and the equivalent electrical circuit model of turbine-generator mechanism can thus be combined into the electromechanical integrated circuit model (Thevenin’s analogy circuit model and Norton's analogy circuit model). The electromechanical integrated circuit model is helpful for analyzing the energy conversion, power transmission and interactions between the mechanical and electrical systems for a turbine generator unit. In order to learn about these electromechanical interactions by using the proposed electromechanical integrated circuit model, the thesis has made a study on the torsional mode frequencies for a small gas turbine generator unit and for a large steam turbine generator unit respectively. By way of the frequency scanning and eigenvalue calculation, it is found that the torsional mode frequencies can be changed due to the electromechanical integration. Moreover, the small unit was more affected by the electromechanical integration than the large unit. Finally, we studied the effect of operations of an Electric Arc Furnaces (EAF) on torsional vibrations of a low capacity turbine generator. The electric system studied belongs to a practical steel plant in an industrial park. Based on the electromechanical integrated equivalent circuit model, a flywheel coupling shaft was designed. It is found by simulations that the coupling shaft can be quite effective in alleviating vibrations caused by the system unbalance arising from the EAF operations.
目次 Table of Contents
中文摘要..............…………................………................…... I
英文摘要…………..………………………………………... II
目錄................…….…................………................…………. III
圖目錄.................………................………................……… VI
表目錄................….……................………................……… XI
第一章 緒論..............…………........….......………............. 1
1.1 研究背景與動機................……..…...................……. 1
1.2 論文內容架構….…………………..………………... 4
第二章 渦輪發電機組介紹.....……............................….. 6
2.1 渦輪機組介紹…......……..……..…………………... 6
2.1.1 蒸汽渦輪發電機組……………...…….............. 6
2.1.2 微渦輪發電機組………....……………………. 8
2.1.3 直結式風力渦輪發電機組……………………. 9
2.1.4 小型水力渦輪發電機組…....…………………. 11
2.2 機械系統模型………………….…………………... 13
2.2.1 轉軸系統………………………………………. 13
2.2.2 葉片…....………………………………………. 15
2.3 渦輪機之機械模型......…..…............................... 17
2.3.1 汽輪機模型……………………………………. 17
2.3.2 微渦輪機模型……………....…………………. 18
2.3.3 直結式風力渦輪機模型…….………...………. 19
2.3.4 小型水力渦輪機模型..…....…………………... 21
第三章 機電整合...…………………….…………………. 23
3.1 機電類比分析......….......................………......……... 23
3.2 渦輪發電機組之機電類比模型..………………….... 25
3.3 圓柱轉子同步發電機電路模型.......…………….….. 28
3.4 永磁式同步發電機電路模型.........…………….....… 31
3.5 圓柱轉子同步發電機之機電整合….…..………...… 34
3.5.1 機電介面..………………………...………….... 34
3.5.2 機電整合等效電路……………...…………….. 36
3.6 永磁式同步發電機之機電整合…...………...........… 39
3.6.1 機電介面…........………………………............. 39
3.6.2 渦輪發電機組之機電整合等效電路………..... 40
3.6.3 風力渦輪發電機組之機電整合等效電路……. 42
3.6.4 水力渦輪發電機組之機電整合等效電路…..... 42
3.7 機電整合等效機構模型…...…..…………….........… 44
第四章 實際機組的模擬分析..………………………… 45
4.1 小型機組機電整合分析....…….……..………........... 45
4.2 大型機組機電整合分析..……..……..….………....... 53
4.3 討論..….…………………………….……….............. 62
第五章 電弧爐運轉對小型發電機組扭轉振動的影響 63
5.1 諧波電流與不平衡電流分析....……….………...….. 63
5.1.1 電弧爐運轉電流分析…………….……............. 63
5.1.2 電磁激擾轉矩分析….…………..….………….. 64
5.1.3 轉軸扭轉轉矩分析……………….……............. 65
5.2 研究系統介紹…...……………..………….............… 66
5.3 系統模型……………...…………………...............… 67
5.4 頻率特性……………...………………...…............… 70
5.5 模擬測試……………...………………......…….....… 73
5.5.1 諧波模擬分析……………….…………............. 73
5.5.2 不平衡模擬分析….……………..….………….. 74
5.6 機械濾波器之裝設…...………………...…............… 77
5.7 討論…………………...…………………...............… 83
第六章 結論………………...………..…….……………… 85
6.1 本論文的價值與貢獻....………..…..…...……........... 85
6.2 未來研究方向............…………................….............. 86
參考文獻............……….....….........…............………........... 88
附錄A............……….....….......………............………........... 95
附錄B............……….....….......………............………........... 96
參考文獻 References
[1] C. Chyn, R. C. Wu and T. P. Tsao, “Torsio13nal fatigue of turbine generator shafts
due to network faults,” IEE Proc. Generation, Transmission and Distribution, vol.
143, no. 5, pp. 479-486, 1996.
[2] S. O. Faried and S. Aboreshaid, “Stochastic evaluation of turbine-generator shaft
torsional torques in a HVAC/DC power system,” IEEE Trans. on Power Systems,
vol. 17, no. 3, pp. 739-746, 2002.
[3] S. O. Faried, R. Billinton, S. Aboreshaid and M. Fotuhi-Fifilzabad, “Effect of
adaptive short time compensation on the stochasticbehavior of turbine-generator
shaft torsional torques,” IEEE Trans. on Energy Conversion, vol. 15, no. 3, pp.
305-311, 2000.
[4] S. O. Faried, S. Upadhyay and S. Al-Senaidi, “Impact of six phase transmission line
faults on turbine-generator shaft torsional torques,” IEEE Trans. on Power Systems,
vol. 17, no. 2, pp. 365-370, 2002.
[5] M. A. Masrur, A. K. Ayoub and J. T. Tielking, “Studies on asynchronous operation
of synchronous machines and related shaft torsional stresses,” IEE Proc. Generation,
Transmission and Distribution, vol. 138, no. 1. pp. 47-56, Sep. 1991.
[6] D. Stojanovic, D. Petrovic and N. Mitrovic, “Torsional torques of big
turbine-generator shafts due to malsynchronization,” IEEE International Conference
on Electrotechnical, pp. 1051 – 1054, May 2000.
[7] T. P. Tsao and C. H. Lin, “Long term effect of power system unbalance on the
corrosion fatigue life expenditure of low pressure turbine blades,” IEE Proc. Science,
Measurement and Technology, vol. 147, no. 5. pp. 229-236, 2000.
[8] T. J. Hammons, C. K. Lim, Y. P. Lim and P. Kacejko, “Proposed 4 GW
Russia-Germany link-impact of 1 GW inverter station on torsional stressing of
generators in Poland,” IEEE Trans. on Power Systems, vol. 13, no. 1, pp. 190-196,
1998.
[9] T. J. Hammons and Mui Wah Goh, “Turbine generator system modeling and impact
of variable-frequency ripple currents on torsional stressing of generators in Poland
and Sweden: Lithuania/Poland and Sweden/ Poland HVDC links,” IEEE Trans. on
Energy Conversion, vol. 15, no. 4, pp. 384-394, 2000.
[10] J. I. Tsai, C. H. Lin and T. P. Tsao, “Assessment of Long-Term Life Expenditure
for Steam Turbine Shafts Due to Noncharacteristic Subharmonic Currents in
Asynchronous Links,” IEEE Trans. on Power Systems, vol. 19, no. 1, pp. 507-516,
2004.
[11] P. Pourbeik, D. G. Ramey, N. Abi-Samra, D. Brooks and A. Gaikwad,
“Vulnerability of Large Steam Turbine Generators to Torsional Interactions During
89
Electrical Grid Disturbances,” IEEE Trans. on Power Systems, vol. 22, no. 3, pp.
1250-1258, 2007.
[12] N. Prabhu and K. R. Padiyar, “Investigation of Subsynchronous Resonance With
VSC-Based HVDC Transmission Systems,” IEEE Trans. on Power Delivery, vol.
24, no. 1, pp. 433- 440, Jan. 2009.
[13] M. C. Chudasama and A. M. Kulkarni, “Dynamic Phasor Analysis of SSR
Mitigation Schemes Based on Passive Phase Imbalance,” IEEE Trans. on Power
Systems, vol. 26, no. 3, pp. 1668-1676, Aug. 2011.
[14] C. Sihler and A. M. Miri, “A stabilizer for oscillating torques in synchronous
machines,” IEEE Trans. on Industry Applications, vol. 41, no. 3, pp. 748-755, 2005.
[15] M. Mahdavian, M. Bayati Poudeh and S. Eshtehardiha, “HVDC/HVAC System
and Damping the Oscillation by a Linear Controller Based on Genetic Algorithm,”
IEEE Region 10 Conference TENCON, pp. 1-5, Nov. 2008.
[16] T. Goya, E. Omine, T. Senjyu, M. Tokudome, A. Yona, N. Urasaki, T. Funabashi
and K. Chul-Hwan, “Torsional Torque Suppression of Decentralized Generators
using H∞ Observer,” IEEE International Symposium on Industrial Electronics, pp.
2087-2092, July 2008.
[17] M. Tokudome, E. Omine, T. Senjyu, T. Goya, A. Yona, and T. Funabashi,
“Torsional torque suppression of decentralized generators using H∞ observer with
parameter identification,” IEEE International Conference on Transmission and
Distribution, pp. 1-4, Oct. 2009
[18] M. Bongiorno, L. Angquist and J. Svensson, “A Novel Control Strategy for
Subsynchronous Resonance Mitigation Using SSSC,” IEEE Trans. on Power
Delivery, vol. 23, no. 2, pp. 1033- 1041, April 2008.
[19] M. S. El-Moursi, B. Bak-Jensen and M. H. Abdel-Rahman, “Novel STATCOM
Controller for Mitigating SSR and Damping Power System Oscillations in a Series
Compensated Wind Park,” IEEE Trans. on Power Electronics, vol. 25, no. 2, pp.
429-441, Feb. 2010.
[20] J. I. Tsai, “A new single-pole switching technique for suppressing
turbine-generator torsional vibrations and enhancing power stability and continuity,”
IEE Proc. Generation, Transmission and Distribution, vol. 1, no. 5. pp. 804-810,
2007.
[21] C. H. Lin and T. P. Tsao, “Suppress vibrations on turbine blades by
high-temperaturesuper-conductive fault current limiter,” IEE Proc. Generation,
Transmission and Distribution, vol. 148, no. 2. pp. 97-103, 2001.
[22] T. Rauhala and P. Ja rventausta, “On Feasibility of SSDC to Improve the Effect
of HVDC on Subsynchronous Damping on Several Lower Range Torsional
90
Oscillation Modes,” IEEE Power and Energy Society General Meeting, pp. 1- 8,
July 2010.
[23] M. H. Ali, M. Park, I. K. Yu, T. Murata and J. Tamura, “Effect of Fuzzy
Logic-Controlled SMES on Damping Turbine Generator Shaft Torsional
Oscillations During Unsuccessful Reclosing,” IEEE International Conference on
Transmission and Distribution , pp. 1-8, April 2008.
[24] A. Abu-Siada and S. Islam, “Application of SMES Unit in Improving the
Performance of an AC/DC Power System,” IEEE Trans. on Sustainable Energy, vol.
2, no. 2 , pp. 109-121, April 2011.
[25] R. M. Hamouda, Z. R. AlZaid and M. A. Mostafa, “Damping torsional oscillations
in large turbo-generators using Thyristor Controlled Braking Resistors,” IEEE
International Conference on Power Engineering, pp. 1-6, 2008.
[26] M. Yagami and J. Tamura, “Power System Stabilization by Fault Current Limiter
and Thyristor Controlled Braking Resistor,” IEEE International Conference on
Energy Conversion Congress and Exposition, pp.548-553, Sept.2009.
[27] M. H. Wang, “Application of extension theory to vibration fault diagnosis of
generator sets,” IEE Proc. Generation, Transmission and Distribution, vol. 151, no.
4. pp. 503-508, 2004.
[28] Y. Zhang, S. Huang, W. Gao and T. Shen, “Vibration Fault Diagnosis of Steam
Turbine Shafting Based on Probability Neural Networks,” IEEE International
Conference on Image and Signal Processing, pp. 582 – 585, 2008.
[29] N. M. Bui, A. A. Golovkov and A. A. Mamroukov, “Measurement of vibration
parameters of steam turbines blades using microwave approach,” IEEE
International Conference on Microwave and Telecommunication Technology, pp.
703 – 704, 2004.
[30] Bowler and E. J. Colin, “Grid Induced Torsional Vibrations in Turbine-
Generators – Instrumentation, Monitoring, and Protection,” IEEE Power and
Energy Society General Meeting, pp. 1-7, 2012.
[31] L. Fan, R. Kavasseri, Z. L. Miao and C. Zhu, “Modeling of DFIG-Based Wind
Farms for SSR Analysis,” IEEE Trans. on Power Delivery, vol. 25, no. 4, pp.
2073-2082, Oct. 2010.
[32] H. Geng, D. Xu, B. Wu and G. Yang, “Active Damping for PMSG-Based WECS
With DC-Link Current Estimation,” IEEE Trans. on Industrial Electronics, vol. 58,
no. 4, pp. 1110 - 1119, April 2011.
[33] L. Fan, H. Yin and Z. Miao, “On Active/Reactive Power Modulation of
DFIG-Based Wind Generation for Interarea Oscillation Damping,” IEEE Trans. on
Energy Conversion, vol. 26, no. 2, pp. 513- 521, June 2011.
91
[34] T. Funabashi, H. Otoguro, T. Tanabe, G. Fujita, K. Koyanagi and R. Yokoyama,
“An Influence of Voltage Sag Duration on Non-Utility Generator’s Shaft Torque,”
IEEE Power Engineering Society, pp.153-158, 2000.
[35] T. Funabashi, H. Otoguro, T. Tanabe, G. Fujita, K. Koyanagi and R. Yokoyama,
“An Influence of Voltage Sag on Non-Utility Generator Shaft Torque,” IEEE Power
Engineering Society, Winter Meeting, pp. 2463-2468, 2000.
[36] J. C. A. Escobar Martinez and Francisco. de la Rosa, “Shaft Torsional Vibration
due to Non-linear Loads in low Capacity Turbine Units,” IEEE Power Engineering
Society Summer Meeting, pp.1403-1408, 2001.
[37] R. Lasseter, “Dynamic Models for Micro-turbine and Fuel Cells,” IEEE Power
Engineering Society, Summer Meeting, pp. 761-766, 2001.
[38] M. Nagpal, A. Moshref, G. K. Morison and P. Kundur, “Experience with Testing
and Modeling of Gas Turbines,” IEEE Power Engineering Society, Winter Meeting,
pp. 652-656, 2001.
[39] A. Cano, F. Jurado and J. Carpio, “Modelling of Power Plants Based on
Gasifier/Gas Turbine Technologies,” IEEE Africon Conference in Africa, pp.
797-802, 2002.
[40] H. Bai, F. Wang, D. Wang, C. L. Liu and T. Y. Wang, “A Pole Assignment of
State Feedback based on System Matrix for Three-Phase Four-Leg Inverter of High
Speed PM Generator Driven by Micro-Turbine,” IEEE International Conference on
Industrial Electronics and Applications, pp. 1361-1366, May 2009.
[41] C. Jiang, H. Yang, Y. Sun and R. Wu, “The Design of Converter Circuit in
Distributed Power Generation System,” IEEE International Conference on
Computer, Mechatronics, Control and Electronic Engineering, pp. 241-243, Aug.
2010.
[42] M. Ortega, F. Jurado and J. Carpio, “Control of indirect matrix converter with
bidirectional output stage for micro-turbine,” IET Trans. on. Power Electronics
Generation, Transmission and Distribution, vol. 5, no. 6. pp. 659-668, 2012.
[43] J. G. Slootweg, S. W. H. de Haan, H. Polinder, W. L. Kling, “General model for
representing variable speed wind turbines in power system dynamics simulations,”
IEEE Transactions on Power Systems, vol. 18, no. 1. pp. 144-151, 2003.
[44] X. Gong, X. Yang and W. Qiao, “Wind Speed and Rotor Position Sensorless
Control for Direct-Drive PMG Wind Turbines,” IEEE Industry Applications Society
Annual Meeting, pp.1-8, Oct. 2010.
[45] Q. Wei, Z. Wei, J. M. Aller and R.G Harley, “Wind Speed Estimation Based
Sensorless Output Maximization Control for a Wind Turbine Driving a DFIG,”
IEEE Trans. on. Power Electronics, vol. 23, no. 3. pp. 1156-1169, May 2008.
92
[46] J. Chen, J. Chen and C. Gong, “Constant-Bandwidth Maximum Power Point
Tracking Strategy for Variable-Speed Wind Turbines and its Design Details,” IEEE
Trans. on. Industrial Electronics, vol. 59, no. 3. pp. 116-121, May 2012.
[47] K. Kim, T. Van, D. Lee, S. Song and E. Kim, “Maximum Output Power Tracking
Control in Variable-Speed Wind Turbine Systems Considering Rotor Inertial
Power,” IEEE Trans. on. Industrial Electronics, vol. 59, no. 4. pp. 226-271, May
2012.
[48] M. Mao, J. Su, L. Chang, G. Zhang and Y. Zhou, “Controller for 1kW-5kW
wind-solar hybrid generation systems ,” IEEE International Conference on
Electrical and Computer Engineering, pp. 1175-1178, May 2008.
[49] S. M. Muyeen, R. Takahashi, T. Murata and J. Tamura, “Integration of an Energy
Capacitor System With a Variable-Speed Wind Generator,” IEEE Trans. on Energy
Conversion, vol. 24, no. 3, pp. 740- 749, Sep. 2009.
[50] S. M. Muyeen, R. Takahashi, T. Murata and J. Tamura, “A Variable Speed Wind
Turbine Control Strategy to Meet Wind Farm Grid Code Requirements,” IEEE
Trans. Power Systems, vol. 25, no. 1, pp. 331-340, Feb. 2010.
[51] T. Lei, M. Ozakturk and M. Barnes, “Modelling and analysis of DFIG wind turbine
system in PSCAD/EMTDC,” IEEE International Conference on Power Electronics,
Machines and Drives, pp. 1-6, 2012.
[52] P. K. Goel, B. Singh, S. S. Murthy and N. Kishore, “Isolated Wind–Hydro Hybrid
System Using Cage Generators and Battery Storage,” IEEE Trans. on. Industrial
Electronics, vol. 58, no. 4. pp. 1141-1153, April 2011.
[53] W. Li, L. Vanfretti and M. Farrokhabadi, “Modeling of Custom Hydro Turbine and
Governor Models for Real-Time Simulation,” IEEE International Conference on
Complexity in Engineering, pp. 1-6, June 2012.
[54] M. Hauck, I. Munteanu, A. I. Bratcu, S. Bacha and D. Roye, “Operation of
Grid-Connected Cross-Flow Water Turbines in the Stall Region by Direct Power
Control,” IEEE Trans. on. Industrial Electronics, vol. 58, no. 4. pp. 1132-1140,
April 2011.
[55] M. A. Vallet, S. Bacha, I. Munteanu, A. I. Bratcu and D. Roye, “Management and
Control of Operating Regimes of Cross-Flow Water Turbines,” IEEE Trans. on.
Industrial Electronics, vol. 58, no. 5. pp. 1866-1876, May 2011.
[56] S. M. A. Sharkh, D. Morris, S. R. Turnock, L. Myers and A. S. Bahaj,
“Performance of an Integrated Water Turbine PM Generator,” IEEE International
Conference on Power Electronics, Machines and Drives, pp. 486-491, June 2002.
[57] R. E. Precup, Z. Preitl and S. Kilyeni, “ Fuzzy Control Solution for Hydro Turbine
Generators,” IEEE International Conference on Control and Automation, pp. 83-88,
June 2005.
93
[58] H. Sun, J. Liu and Z. Fu, “Application of Fuzzy-PI Controller on Water Turbine
Generator Set,” IEEE International Conference on Computer Application and
System Modeling, pp. 277-280, Oct. 2010.
[59] M. Andreica, S. Bacha, D. Roye, I. Exteberria-Otadui and I. Munteanu,
“Micro-Hydro Water Current Turbine Control for Grid Connected or Islanding
Operation,” IEEE Power Electronics Specialists Conference, pp. 957-962, June
2008.
[60] N. Kose and O. Salor, “New spectral decomposition based approach for flicker
evaluation of electric arc furnaces,” IET Trans. on. Generation, Transmission &
Distribution, vol. 3, no. 4. pp. 393- 411, 2009.
[61] E. Altıntas , O. Salor, I. C adırcı and M. Ermis , “A New Flicker Contribution
Tracing Method Based on Individual Reactive Current Components of Multiple
EAFs at PCC,” IEEE Trans. on. Industry Applications, vol. 46, no. 5. pp. 1746-1754,
Sep. 2010.
[62] Y. J. Hsu, K. H. Chen, P. Y. Huang and C. N. Lu, “Electric Arc Furnace Voltage
Flicker Analysis and Prediction,” IEEE Trans. on. Instrumentation and
Measurement, vol. 60, no. 10. pp. 3360-3368, Oct. 2011.
[63] G. W. Chang, C. I. Chen and Y. J. Liu, “A Neural-Network-Based Method of
Modeling Electric Arc Furnace Load for Power Engineering Study,” IEEE Trans. on
Power Systems, vol. 25, no. 1, pp. 138- 146, Feb. 2010.
[64] S. I. Deaconu, G. N. Popa, A. I. Toma and M. Topor, “Modeling and Experimental
Analysis for Modernization of 100-t EAF,” IEEE Trans. on Industry Applications,
vol. 46, no. 6, pp.2259- 2266, Nov. 2010.
[65] M. T. Esfahani and B. Vahidi, “A New Stochastic Model of Electric Arc Furnace
Based on Hidden Markov Model: A Study of Its Effects on the Power System,”
IEEE Trans. on Power Delivery, vol. 27, no. 4, pp. 1893- 1901, Oct. 2012.
[66] Haidar Samet and Mostafa Parniani, “Predictive Method for Improving SVC
Speed in Electric Arc Furnace Compensation,” IEEE Trans. Power Delivery, vol. 22,
no. 1, pp. 732-734, Jan. 2007.
[67] A. Yazdani, M. L. Crow and J. Guo, “An Improved Nonlinear STATCOM Control
for Electric Arc Furnace Voltage Flicker Mitigation,” IEEE Trans. on Power
Delivery, vol. 24, no. 4, pp. 2284- 2290, Oct. 2009.
[68] B. M. Dehkordi, A. Parsapoor and R. Hooshmand, “Effect of Different Operating
Conditions of Electric Arc Furnace on Synchronous Generator Shaft,” IEEE
International Conference on Electrical Machines and Power Electronics, pp. 824-
829, 2007.
94
[69] R. Horton and T. A. Haskew, “Determination of Flicker Transfer Coefficients Near
Large Synchronous Generators,” IEEE Trans. on Power Delivery, vol. 25, no. 1, pp.
206- 269, Jan. 2010.
[70] 林祺祥,“微渦輪發電機運轉模式轉換之動態模擬”,技術學刊第23 卷第1 期,
中華民國97 年。
[71] http://www.taiwangreenenergy.org.tw/Article/article-more.aspx?id=ADFAC610F3
B787FB
[72] G. D. Jennings, R. G. Harley and D. C. Levy, “Modal analysis representation of
multi-inertia turbogenerators,” Electric Power Systems Research, Vol. 8, No. l, pp.
53-58, 1985.
[73] J. H. Chow, S. H. Javid, J. J. Sanchez, C. E. J. Bowler and J. S. Edmonds,
“Torsional modal identification for turbine-generator,” IEEE Trans. on Energy
Conversion, Vol. 1, No. 4, pp. 83-91, 1986.
[74] T. J. Hammons, M. Istin and A. Crocquevieille, “Analysis of Continuum and
Reduced Shaft Models in Evaluating Turbine-Generator Shaft Torsional Response
following Severe Disturbances on the System Supply,” Electric machines and
power systems, Vol. 13, No. 6, pp. 387-408,1987.
[75] W.J. Kearton, “Steam Turbine Theory and Practice,” 7th Ed, Shin Yueh Book
Company, Taipei, pp.471-490, 1977.
[76] Chi-Hshiung Lin, “A Structural Index to Affect the Operation Life of Steam
Turbine Generators,” International Journal of Circuit Theory and Applications, Vol.
36, Issue 8, pp. 923-938, Nov/Dec 2008.
[77] http://www.geislinger.com/products/coupling/
[78] S. Z. Chen, “3D Modeling and Finite Element analysis of Dynamic Characteristics
for Blades of Wind Turbine,” IEEE International Conference on Power and Energy
Engineerin, pp. 1- 4, March 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code