Responsive image
博碩士論文 etd-0003118-145932 詳細資訊
Title page for etd-0003118-145932
論文名稱
Title
以現址連續監測技術探討工業污水處理程序及天然河口濕地 溫室氣體排放特性之研究
Investigation on the Characteristics of GHGs Emitted from Industrial Wastewater Treatment Processes and Natural Estuarine Wetlands by In-situ Continuous Monitoring Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
244
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-11-16
繳交日期
Date of Submission
2018-01-19
關鍵字
Keywords
溫室氣體(GHGs)、廢水處理廠、排放通量、天然河口濕地、相關性分析、在線連續監測
Correlation analysis, Natural estuarine wetland, Emission flux, Wastewater treatment, In-situ continuous monitoring, Greenhouse gases (GHGs)
統計
Statistics
本論文已被瀏覽 5635 次,被下載 15
The thesis/dissertation has been browsed 5635 times, has been downloaded 15 times.
中文摘要
近年來,氣候變遷(climate change)已受到全球的重視,二氧化碳(CO2)、甲烷(CH4)及氧化亞氮(N2O)為三種主要的溫室氣體,其中濕地是重要的天然碳匯或碳源生態系統,而廢(污)水處理廠也屬於溫室氣體排放的主要來源之一。國內外許多研究均指出廢(污)水處理廠及河口濕地在淨化水質的氧化及還原過程中,會同步釋放出溫室氣體,由於全球暖化(global warming)對環境的嚴重衝擊,因此進一步深入瞭解影響溫室氣體逸散排放的可能影響因子,實有其必要性及重要的環境價值。本研究首先利用自行開發設計的溫室氣體在線連續監測方法與傳統的氣相層析儀(gas chromatography)分析方法,配合動態浮動氣罩(dynamic floating chamber),進行溫室氣體量測的平行比對及精準度驗證;再將在線連續監測系統應用於具代表性的工業廢水處理廠及天然河口濕地,並針對各廢水處理單元及河口濕地不同棲地,分別進行連續24小時的溫室氣體監測,藉以精準推估溫室氣體排放量及排放係數,再進一步配合量測所得的水質參數進行相關性分析。
本研究針對石化工業及綜合工業廢水處理廠的現地溫室氣體監測結果發現,若每天僅採集數組氣體樣品進行溫室氣體濃度分析,用以估算溫室氣體的逸散排放量,非常可能會發生明顯高估或低估情形。由光學儀器法(NDIR)與氣相層析分析法的平行比對結果得知,除少部分樣品外,光學分析法與層析分析法,針對短時間及相同氣體樣品,兩種方法量測數據的差異性不大,例如:每天採集至少四次以上的採樣頻率,絕大部分相對誤差均低於7%,可見應用動態浮動氣罩進行GHGs監測具有可行性及可信度。
由24小時連續監測結果得知,兩座廢水處理廠的溫室氣體排放濃度均呈現明顯的日夜變化趨勢,各處理單元溫室氣體逸散濃度呈現日間高於夜間之趨勢,其可能原因除日夜溫度變化外,各處理單元廢水的水質變化亦為可能原因之一。由在線連續監測結果得知,廢水處理場密閉式處理單元可監測到較高的GHG濃度,乃因密閉單元容易造成溫室氣體濃度的累績,相較之下開放單元較不易受到濃度累積之影響。各處理單元溫室氣體逸散均有明顯變化,CH4的日間逸散量較夜間高,N2O的夜間濃度變化較無明顯趨勢,反而是日間濃度有逐漸升高之趨勢。經由各處理單元排放溫室氣體的監測結果進行排放係數計算,配合操作相關資料進而推估出各處理單元溫室氣體排放量,亦可明顯看出各處理單元溫室氣體排放量,CO2的最高排放通量單元為調勻池及曝氣池;而CH4及N2O的最高排放通量單元均為終沉池。
天然河口濕地受潮汐作用影響,河水及有機物與空氣接觸,進而因含氧量變化而影響溫室氣體的排放,植物對有機物的物理及化學作用(如:溫度、濕度、pH、有機物含量及胺基酸等)明顯改變溫室氣體的逸散排放特徵,可見濕地的植物影響溫室氣體排放比潮汐影響還要來得重要。因濕地有不同的濕地條件可能影響其生物、地質及化學程序,亦即影響碳匯及CH4釋放能力的多寡。濕地土壤長年處於浸水狀態,土壤孔隙呈飽滿水份狀態,底層土壤容易形成厭氣環境,氧化還原電位較低,且有機物含量豐富,這些都是造成CH4排放的原因。而夏季N2O排放濃度明顯高於CH4,原因為夏季溫度較高,會提高微生物的活性,增加脫硝與硝化作用的反應速率。
天然河口濕地的三種棲地(泥灘地、植物及河水)對溫室氣體CO2、CH4及N2O排放通量有明顯的影響。由天然河口濕地溫室氣體排放與水質相關性分析結果得知,在濕地環境中CO2排放濃度與水溫、DO和TP呈明顯正相關,CH4排放濃度與DO、TP和NH4+-N呈明顯正相關,而N2O排放濃度與DO、TP和TN具有明顯正相關。因此,若能有效控制濕地環境的水質條件,或可降低天然濕地的溫室氣體排放量。
Abstract
In the context of global warming and climate change, greenhouse gas (GHG) emission has received a considerable attention for the past decades. Of many natural GHG sources, wetland plays an important role in modulating the concentrations of GHGs in the atmosphere. This study aims to continuously monitor the emission of greenhouse gases (CO2, CH4, and N2O) from a constructed wetland. A self-designed dynamic floating chamber was applied to collect GHGs through a Teflon tube connected to the top of the chamber, and in-situ monitored the concentrations of GHGs with a non-dispersive infrared (NDIR) monitor to continuously measure GHG emissions, estimated its CO2 equivalent (CO2-e), and investigated the seasonal variation of GHGs. This study further correlated GHGs and water quality, and combined GHG data and net primary production data to understand GHG emission from a natural estuarine wetland and a wastewater treatment plant.
The temporal variation of greenhouse gas (GHG) emission from petrochemical and integrated industry wastewater treatment plants (WWTP) was then investigated. Two approaches including an in-situ continuous monitoring and a typical grab sampling methods were further compared. The in-situ continuous monitoring method provided more detailed information regarding the temporal variation of GHG concentration. A sufficient sampling frequency (e.g., once every 6 hours) for the grab sampling method is required to effectively resolve the diurnal variation of GHG emission. This study highlights significant diurnal variation of GHG concentration in different wastewater treatment units. Only with proper and reliable sampling and analytical methods, it becomes possible to correctly identify the characteristics of GHG emissions and to develop strategies to curtail the GHG emissions from such an important source in response to regulatory measures and international treaties.
This study revealed that N2O was the dominant species responsible for GHG emissions from the WWTPs and the emission factors of CH4, and N2O were higher in the equalization tank and final sedimentation tank compared to other units. We also compared the GHG emission factors of this study with other literatures, showing that the GHG emission factors were much lower than those measured in Netherlands, Australia, and IPCC, but similar to those measured in Japan.
Wetland play a crucial role in modulating atmospheric concentrations of greenhouse gases (GHGs). Key factors controlling GHG emission from subtropical estuarine wetlands were investigated in this study, which continuously monitored the uptake/emission of GHGs by/from a subtropical estuarine wetland located in the Minjiang and Zhangjiang estuaries in the coastal region of southeastern China. A self-designed floating chamber was used to collect air samples on-site at three environmental habitats (P. australis, mangrove, mudflats, and river water). Based on its potential to increase global warming, N2O was the main contributor to the total GHG emission, with that emitted from the river water being the most considerable. Tidal water carried onto the marsh had its own GHG content and thus may act as a source or sink of GHGs. However, water quality had a large effect on GHG emissions from the riverwater whereas the tidal water height did not. Both high salinity and large amounts of sulfates in the wetlands explicitly inhibited the activity of CH4-producing bacteria, particularly at nighttime. This study also investigated the seasonal variation of GHG emissions and estimated their overall CO2 equivalent (CO2-e). The GHG emissions were further correlated with water quality to identify which water quality parameters dominated GHG emissions in an estuarine mangrove ecosystem. A positive correlation was found between CO2 emission and water temperature, dissolved oxygen (DO), and total phosphorus (TP) in the riverwater. CH4 emission was positively correlated with TP, DO, and NH4+-N, while N2O emission was significantly positively correlated with DO, TP, and total nitrogen (TN) in the riverwater.
目次 Table of Contents
頁次
論文審定書…………………….………………………………... i
誌謝…………………………………………....………………… ii
中文摘要……………………….………………………….….…. iii
ABSTRACT……….………………………………………….…. v
目錄…………………………………………………………..…. viii
表目錄……………………………………………………...….… xiii
圖目錄…………………………………………………………… xvii
第一章 前言……………………………………………………. 1-1
1-1研究緣起………………………………………………..… 1-1
1-1-1人為排放源………………………………………… 1-3
1-1-2天然排放源………………………………………… 1-4
1-2研究目的………………………….……………………… 1-5
1-3研究架構………………………….……………………… 1-6
第二章 文獻回顧…………………………………………..…… 2-1
2-1溫室氣體…….…………………………………...……… 2-1
2-2溫室效應………………………………………...……… 2-1
2-3溫室效應的影響……………………………..……….… 2-4
2-3-1全球氣候持續暖化………………………………… 2-5
2-3-2降雨型態與區域的改變…………………………… 2-6
2-4溫室氣體的來源……………………………...………… 2-8
2-5廢水處理廠介紹…………………………………...…… 2-10
2-5-1廢水處理過程中溫室氣體形成機制………….…… 2-10
2-5-2曝氣之影響………………………………………… 2-16
2-5-3好氧處理之影響…………………………………… 2-17
2-5-3-1經濟溶氧量…………………………….…..….. 2-18
2-5-3-2溶氧量控制…………………….……………… 2-20
2-5-4厭氧處理之影響…………………………………… 2-20
2-5-5水質pH值之影響………..…………………………. 2-21
2-6濕地介紹………………………………………………... 2-24
2-6-1濕地的定義………………………………………… 2-25
2-6-2濕地的類別……………………………………….… 2-26
2-6-2-1海岸濕地及內陸濕地……………………….… 2-27
2-6-2-2人工濕地…………………………………......... 2-29
2-6-3濕地環境中溫室氣體的形成機制……………….… 2-30
2-6-4影響濕地溫室氣體排放因子………………….….... 2-32
2-7採氣罩(Sampling Chamber)監測技術………………….... 2-35
2-7-1採氣罩原理及優缺點…………………………......... 2-35
2-7-2採氣罩種類……………………………………….… 2-36
2-7-2-1密閉式靜置氣罩(Closed Static Chamber)…….. 2-36
2-7-2-2密閉式動態氣罩(Closed Dynamic Chamber)… 2-37
2-7-2-3開放式動態氣罩(Open Dynamic Chamber)….. 2-38
2-7-3經驗公式差補法(Empirical Interpolation)推估全年
溫室氣體交換通量………………………………… 2-41
2-8國內外廢水處理廠釋放溫室氣體相關研究…………….. 2-41
2-9國內外濕地釋放溫室氣體相關研究………………….…. 2-43
第三章 研究方法………………………………………..……… 3-1
3-1工業廢水處理廠選定及現況特徵……….………………. 3-1
3-1-1仁大工業區聯合廢水處理廠…..………………….… 3-1
3-1-1-1仁大工業區聯合廢水處理廠處理方法.…….…. 3-2
3-1-1-2仁大工業區聯合廢水處理廠處理流程.……….. 3-2
3-1-2屏南工業區聯合廢水處理廠…..………………….… 3-3
3-1-2-1屏南工業區廢水處理廠處理方法………..….… 3-4
3-1-2-2屏南工業區廢水處理廠處理流程.…………….. 3-4
3-2天然河口濕地選定及現況特徵……………..…...…….… 3-5
3-2-1閩江河口濕地…..…………….……………………… 3-6
3-2-2漳江河口濕地…..………………………………….… 3-6
3-3採樣分析與連續監測位置……………….………….…… 3-9
3-3-1廢水處理廠…………………………………….…… 3-9
3-3-1-1仁大工業區聯合廢水處理廠……….……..….. 3-9
3-3-1-2屏南工業區聯合廢水處理廠……….…..…..… 3-9
3-3-2天然河口濕地……………………………….……… 3-9
3-3-2-1閩江河口濕地………………………….……… 3-10
3-3-2-2漳江河口濕地………………………….……… 3-10
3-4溫室氣體採樣及在線監測方法………………………….. 3-10
3-4-1溫室氣體採樣方法…………………………………. 3-10
3-4-2溫室氣體分析方法………………………………… 3-11
3-4-2-1氣相層析法(GC/FID及GC/ECD)…….……… 3-11
3-4-2-2溫室氣體在線連續監測方法…………………. 3-13
3-4-2-3 廢水處理單元溫室氣體監測及平行比對分析 3-16
3-4-3廢水處理廠及河口濕地水質採樣及分析……….… 3-17
3-4-3-1廢水處理廠………….…………….……….….. 3-17
3-4-3-2天然河口濕地………….…………………….... 3-17
3-5廢水廠溫室氣體排放濃度、排放係數、排放量推估….. 3-17
3-5-1排放濃度計算………….…………….………….….. 3-17
3-5-2排放係數估算………….……………….……….….. 3-18
3-5-3排放量推估…………….…………….………….….. 3-18
3-5-4碳氮平衡經驗公式……….………...….……….…... 3-19
3-5-5廢水處理廠之溫室氣體排放量估算….…...….…... 3-20
3-5-6天然河口濕地溫室氣體排放通量估算..……...…… 3-23
3-6溫室氣體排放與水質及環境條件統計分析方法...……... 3-25
第四章 在線連續監測技術與氣相層析法之驗證比對……….. 4-1
4-1 GHG監測方法驗證比對………………………….……... 4-1
4-1-1分析方法的優缺點…………...…………..……….... 4-1
4-1-2分析方法的平行比對………....….……………….... 4-2
4-2 GHG量測方法的時間代表性....….……………………... 4-3
4-2-1時間代表性………………………....................……. 4-4
4-2-2季節差異性…………………………………....……. 4-5
第五章 廢水處理廠溫室氣體排放特性………..…..………….. 5-1
5-1廢水處理廠溫室氣體濃度變化……………………….…. 5-1
5-1-1石化工業廢水處理廠………………………...…….. 5-1
5-1-1-1冬季濃度變化…………………….………..….. 5-1
5-1-1-2夏季濃度變化…………………….………..….. 5-3
5-1-2綜合工業廢水處理廠………………………...……. 5-11
5-1-2-1冬季濃度變化…………………………………. 5-11
5-1-2-2夏季濃度變化……………..…………………... 5-13
5-2廢水處理廠溫室氣體排放濃度、排放係數、排放量….. 5-15
5-2-1溫室氣體排放濃度結果………………..……….….. 5-15
5-2-2溫室氣體排放係數推估結果…………..…………... 5-23
5-2-3溫室氣體排放量估算結果…………..……..………. 5-25
5-3廢水處理廠溫室氣體與水質參數相關性分析……..…… 5-30
5-3-1廢水處理廠溫室氣體排放通量與水質參數之相關性 5-30
5-3-1-1石化工業廢水處理廠………………..…..……. 5-30
5-3-1-2綜合工業廢水處理廠……..………………..…. 5-32
5-3-1-3溫室氣體排放的影響因子……………………. 5-34
5-3-2溫室氣體排放通量與水質資料雷達圖分析………. 5-35
5-3-2-1石化工業廢水處理廠…………………………. 5-35
5-3-2-2綜合工業廢水處理廠…………………………. 5-42
5-3-3多項式廻歸分析模式預測溫室氣體逸散………… 5-43
5-3-3-1 石化工業廢水處理廠………………………… 5-44
5-3-3-2 綜合工業廢水處理廠………………………… 5-49
第六章 天然河口濕地溫室氣體排放特性………..……..…….. 6-1
6-1閩江河口濕地溫室氣體排放特性….……………………. 6-1
6-1-1溫室氣體排放濃度的日夜變化趨勢.……………… 6-1
6-1-1-1泥灘地…………………………………………. 6-1
6-1-1-2蘆葦……………………………………………. 6-2
6-1-1-3河水……………………………………………. 6-2
6-1-2溫室氣體交換通量的日夜變化趨勢…………….… 6-2
6-1-2-1泥灘地……………………………….………… 6-2
6-1-2-2蘆葦……………………………….…………… 6-5
6-1-2-3河水……………………………….…………… 6-7
6-1-3二氧化碳排放當量估算……………....……….…… 6-10
6-2漳江河口濕地溫室氣體排放特性…….…………………. 6-11
6-2-1溫室氣體排放濃度日夜變化趨勢………………… 6-12
6-2-1-1泥灘地…………………………………………. 6-12
6-2-1-2紅樹林……………………………….………… 6-12
6-2-1-3河水……………………………………………. 6-12
6-2-2漳江河口濕地溫室氣體交換通量估算……………. 6-15
6-2-3溫室氣體排放與水質參數變化之相關性…………. 6-15
6-2-4河口濕地溫室氣體排放比較…………………..…... 6-17
第七章 結論與建議…………………………………………….. 7-1
7-1結論….……………………………………………………. 7-1
7-2建議….……………………………………………………. 7-2
參考文獻………………………………………………………… R-1
附錄A GHG連續監測儀標準品分析………………..…….… A-1
附錄B GHG氣相層析儀檢量線分析………………………… B-1
附錄C 溫室氣體監測數據………..…………………..……… C-1
參考文獻 References
參考文獻
Abril, G., Guérin, F., Richard, S., Delmas, R., Galy-Lacaux, C., Gosse, P., Tremblay, A.,Varfalvy, L., and Matvienko, B., 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-year-old tropical reservoir (Petit-Saut, French Guiana). Global Biogeochemical Cycles, 19, GB4007.
Ahn, J.H., Kim, S., Park, H., Rahm, B., Pagilla, K., and Chandran, K., 2010. N2O emissions from activated sludge processes, 2008-2009: Results of a national monitoring survey in the United States. Environmental Science and Technology, 44(12), 4505-4511.
Australian Government, 2013. Australian National Greenhouse Accounts - National Inventory Report the Australian Government Submission to the United Nations Framework Convention on Climate Change.
Banger, K., Tian, H., and Lu, C., 2012. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields. Global Change Biology, 18, 3259-3267.
Banihani, Q, Sireea-Alvarez, R, and Field, J.A., 2009. Nitrate and nitrite inhibition of methanogenesis during denitrification in granular biofilms and digested domestic sludges. Biodegradation, 20, 801-812.
Barton, P.K. and Atwater, J.W., 2002. Nitrous oxide emissions and the anthropogenic nitrogen in wastewater and solid waste. Journal of Environmental Engineering, 128 (2), 137-150.
Beauchamp, E.G., 1997. Nitrous oxide emission from agriculture soils. Canadian Journal of Soil Science, 77, 113-123.
Bergman, I., Klarqvist, M., and Nilsson, M., 2000. Seasonal variation in rates of methane production from peat of various botanical origins: Effects of temperature and substrate quality. FEMS Microbiology Ecology, 33, 181-189.
Blackmer, A.M., Bremner, J.M., and Schmidt E L., 1980. Production of nitrous oxide by ammonia oxidizing chemoautotrophic microorganisms in soil. Applied and Environmental Microbiology, 40 (6), 1060-1066.
Bousquet, P., Ciais, P., Miller, J.B., Dlugokencky, E.J., Hauglustaine, D.A., Prigent, C., Van der Werf, G.R., Peylin, P., Brunke, E.G., Carouge, C., Langenfelds, R.L., Lathière, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L.P., Tyler, S.C., and White, J., 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439-443.
Breuer, L., Papen, H., and Butterbach-Bahl, K., 2000. N2O emission from tropical forest soils of Australia. Journal of Geophysical Research, 105, 26353-26367.
Brix, H., Sorrell, B.K., and Lorenzen, B., 2001. Are Phragmites dominated wetlands a net source or net sink of greenhouse gases ? Aquatic Botany, 69, 313-324.
Bubier, J., Frolking, S., Crill, P., and Linder, E., 1999. Net ecosystem productivity and its uncertainty in a diverse boreal peatland. Journal of Geophysical Research, 104, 27683-27692.
Bubier, J.L., Crill, P.M., Moore, T.R., Savage, K., and Varner, R.K., 1998. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal pearland complex. Global Biogeochemical Cycles, 12, 703-714.
Burgess, J.E., Colliver, B.B., Stuetz, R.M., and Stephenson, T., 2002. Dinitrogen oxide production by a mixed culture of nitrifying bacteria during ammonia shock loading and aeration failure. Journal of Industrial Microbiology and Biotechnology, 29(6), 309-313.
Cakir, F.Y. and Stenstrom, M.K., 2005. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology. Water Research, 39, 4197-4203.
Cantarel, A.A.M., Bloor, J.M.G., Deltroy, N., and Soussana, J.F., 2011. Effects of climate change drivers on nitrous oxide fluxes in an upland temperate grassland. Ecosystems, 14, 223-233, 2011.
Carroll, P. and Crill, P., 1997. Carbon balance of a temperate poor fen. Global Biogeochemical Cycles, 11, 349-356.
Chanton, J.P., Whiting, G.J., Happell, J.D., and Gerard, G., 1993. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Botany, 46, 111-128.
Chanton, J.P., whiting, G.J., Showers, W.J., and Crill, P.M., 1992. Methane flux from Peltandra oirginica: Stable isotope tracing and chamber effects. Global Biogeochemical Cycles, 6, 15-31.
Cheng, X., Peng, R., Chen, J. Luo, Y., Zhang, Q., An, S., Chen, J., and Li, B., 2007. CH4 and N2O emissions from Spatina alterniflora and Phragmites australis in experimental macrocosms. Chemosphere, 68, 420-427.
Colliver, B.B. and Stephenaon, T., 2000. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifies. Biotechnology Advances, 18, 219-232.
Crozier, C.R., Devai, I., and DeLaune, R.D., 1998. Methane and reduced sulfur gas production by fresh and dried wetland soils. Soil Science Society of America Journal, 59, 277-284.
Daelman, M.R.J., van Voorthuizen, E.M., van Dongen, U., Volcke, E. I. P., and van Loosdrecht, M.C.M., 2012. Methane emission during municipal wastewater treatment. Water Research, 46, 3657-3670.
Day, J.W. Jr., Carlos, Coronado-Molina., Vera-Herrera, F.R. Twilley, R., Rivera-Monroy, V.H., Alvarez-Guillen, H., Day, R., and Conner, W., 1996. A 7-year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquatic Botany, 55(1), 39-60.
Denmead, O.T., 2008. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant and Soil, 309, 5-24.
Denmead, O.T., Macdonald, B.C.T., Bryant, G., White, I., Moody, P., Dalal, R.C., and Stainlay, W., 2006. Greenhouse gas emissions from sugarcane soils and nitrogen fertiliser management. Proceedings of the Australian Society of Sugar Cane Technology, 28, 252-260.
Dijkstra, F.A., Prior, S.A., Runion, G.B., Torbert, H.A., Tian, H., Lu, C., and Venterea, R.T., 2012. Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: Evidence from field experiments. Frontiers in Ecology and the Environment, 10, 520-527.
Ding, W.X., Cai, Z.C., and Tsuruta, H., 2001. Diel variation in methane emissions from the stands of Carex lasiocarpa and Deyeuxia angustifolia in a cool temperate freshwater marsh. Atmospheric Environment, 38, 181-188.
El-Fadel, M. and Massoud, M., 2001. Methane emissions from wastewater management. Environmental Pollution, 114, 177-185.
Fan, L.F., Chen, H.J., Hsieh, H.L., Lin, H.J., and Tang, S.L., 2016, Comparing abundance, composition and environmental influences on prokaryotic ammonia oxidizers in two subtropical constructed wetlands. Ecological Engineering, 90, 336-346.
Foley, J.M., de Haas, D., Hartley, K., and Lant, P., 2010a. Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Research, 44, 1654-1666.
Foley, J.M., de Hass, D., and Yuan, Z.G., 2010b. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Research, 44, 831-844.
Garrido, J.M., Campos, J.L., Méndez, R., and Lema, J.M., 1997. Nitrous oxide production by nitrifying biofilms in a biofilm airlift suspension reactor. Water Science and Technology, 36, 157-163.
Goulven, G., Hans, H., Caroline, P., and Alberto, V., 2010. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially‐explicit typology of estuaries and continental shelves. Geophysical Research Letters, 37, L15607, doi:10.1029/2010GL043691.
Hanson, R.S., and Hanson, T.E., 1996. Methanotrophic bacteria, Microbiology Reviews, 60, 439-471.
Hirota, M., Tang, Y.H., Hu, Q.W., Hirata, S., Kato, T., Mo, W.H., Cao, G.M., and Mariko, S., 2004. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology and Biochemistry, 36, 737-748.
Hsieh, H.L., Lin, H.J., Shih, S.S., and Chen, C.P., 2015. Ecosystem functions connecting contributions from ecosystem services to human wellbeing in a mangrove system, northern Taiwan, International Journal of Environmental Research and Public Health, 12, 6542-6560.
Hsueh, M.L., Yang, L., Hsieh, L.Y., Lin, and H.J., 2014. Nitrogen removal along the treatment cells of a free-water surface constructed wetland in subtropical Taiwan, Ecological Engineering, 73, 579-587.
Huang, Y.H., Hsiao, S.C., Lee, C.L., Chung, C.Y., and Lin, H.J., 2015. Leaf carbon budgets of multispecies seagrass beds in the South China Sea, Marine Environmental Research, 106, 92-102.
Inamori, R., Gui, P., Dass, P., Matsumura, M., Xu, K.Q., Kondo, T., Ebie, Y., and Inamori, Y., 2007. Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms. Process Biochemistry, 42, 363-373.
International Water Association (IWA), 2000. Constructed Wetlands for Pollution Control. Processes, Performance, Design and Operation. IWA Publishing, London.
IPCC WG1 Technical Support Unit, Hadley Centre, Meteorological Office, Bracknell, UK. IPCC (1997).
IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 2006.
IPCC, Revised 1996 IPCC Guidelines for National Greenhouse Gas Emission Inventories. Three volumes: Reference manual, Reporting Guidelines and Workbook. IPCC/OECD/IEA, 1997.
Itokawa, H., Hanaki, K., and Matsuo, T., 2001. Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research, 35, 657-664.
Jiang, G.M., Gutierrez, O., and Sharma, K.R., 2010. Effect of nitrite concentration and exposure time on sulfide and methane production in sewer systems, Water Research, 44, 4241-4251.
Jing, S.R., Lin, Y.F., Shih, K.C., and Lu, H.W., 2008. Applications of constructed wetlands for water pollution control in Taiwan-Review. Toxic, and Radioactive Waste Management, October, 249-259.
Johansson, A.E., Gustavsson, A.M., Oquist, M.G., and Svensson, B.H., 2004. Methane emissions from a constructed wetland treating wastewater-seasonal and spatial distribution and dependence on edaphic factors. Water Research, 38, 3960-3970.
Johansson, A.E., Klemedtsson, Å.K., Klemedtsson, L., and Svensson, B.H., 2003. Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater. Tellus, 55B, 737-750.
John, H., 2001. Global Warming: The Complete Briefing Cambridge University Press. 10-13.
Joos, F., Roth, R., Fuglestvedt, J.S., Peters, G.P., Enting, I.G., von Bloh, W., Brovkin, V., Burke, E.J., Eby, M., Edwards, N.R., Friedrich, T., Fro¨ licher, T.L., Halloran, P.R., Holden, P.B., Jones, C., Kleinen, T., Mackenzie, F.T., Matsumoto, K., Meinshausen, M., Plattner, G.K., Reisinger, A., Segschneider, J., Shaffer, G., Steinacher, M., Strassmann, K., Tanaka, K., Timmermann, A., and Weaver, A.J., 2013. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmospheric Chemistry and Physics, 13, 2793-2825.
Kampschreur, M.J., Tan, N.C.G., Kleerebezem, R., and Loosdrecht, M. van., 2008. Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. Environmental Science & Technology, 42(2), 429-435
Kampschreur, M.J., Temmink, H., Kleerebezem, R., Jetten, M.S.M., and Van Loosdrecht, M.C.M., 2009. Nitrous oxide emission during wastewater treatment. Water Research, 43, 4093-4103.
Kampschreur, M.J., Van Der Star, W.R.L., Wielders, H.A., Mulder, J.W., Jetten, M.S.M., and Van Loosdrecht, M.C.M., 2008. Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research, 42 (3), 812-826.
Kathilankal, J.C., Mozdzer, T.J., Fuentes, J.D., Odorico, P.D., McGlathery, K.J., and Zieman. J.C., 2008. Tidal influences on carbon assimilation by a salt marsh. Environmental Research Letters, 3, 044010 (6pp).
Kiener, A. and Leisinger, T., 1983. Oxygen sensitivity of methanogenic bacteria. Systematic and Applied Microbiology, 4, 305-312.
King, J.Y., Reeburgh, W.S., and Regli, S.K., 1998. Methane emission and transport by arctic sedges in Alaska: results of a vegetation removal experiment. Journal of Geophysical Research, 103, 29083-29092.
Kishida, N., Kim, J.H., Kimochi, Y., Nishimura, O., Sasaki, H., and Sudo, R., 2004. Effect of C/N ratio on nitrous oxide emission from swine wastewater treatment process. Water Science and Technology, 49(5-6), 359-365.
Kone, Y.J.M. and Borges, A.V., 2008. Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam). Estuarine, Coastal and Shelf Science, 77, 409-421.
Krithika, K., Purvaja, R., and Ramesh, R., 2007. Fluxes of methane and nitrous oxide from an Indian mangrove. Current Science, 94(25), 218-224.
Liikanen, A., Huttunen, J.T., Karjalainen, S.M., Heikkinen, K., Vaisanen, T.S., Nykanen, H, and Martikainen, P.J., 2006. Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland putifying peat mining runoff waters. Ecological Engineering, 26, 241-251.
Lin, H.J., Hsu, C.B., Liao, S.H., Chen, C.P., and Hsieh, H.L., 2015. Effects of Spartina alterniflora invasion on the abundance and community of meiofauna in a subtropical wetland, Wetlands, 35, 547-556.
Lloyld, D., Boddy, L., and Davies, K.J.P., 1987. Persistence of bacterial denitrification capacity under aerobic conditions: The rule rather than the exception. FEMS Microbiology Letters, 45 (3), 185-190.
MacKenzie, A.F., Fan, M.X., and Cadrin, F., 1998. Nitrous oxide emission in three years as affected by tillage, corn-soybean-alfalfa rotations, and nitrogen fertilization. Journal of Environmental Quality, 27, 698-703.
Magenheimer, J.F., Moore, T.R., Chmura, G.L., and Daoust, R.J., 1996. Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick. Estuaries, 19, 139-145.
Mander, U., Lõhmusa, K., Teiter, S., Nurka, K., Mauring, T., and Augustin, J., 2008. Gaseous fluxes from subsurface flow constructed wetlands for wastewater treatment. Journal of Environmental Science and Health, Part A, 40, 1215-1226.
Mander, U., Teiter, S., and Augustin, J., 2005. Emission of greenhouse gases from constructed wetlands for wastewater treatment and from riparian buffer zones. Water Science and Technology, 52 (10-11), 167-176.
Masscheleyn, P.H., DeLaune, R.D., and Patrick, W.H. Jr., 1993. Methane and nitrous oxide emissions from laboratory measurements of rice soil suspension: Effect of soil oxidation-reduction status. Chemosphere, 26, 251-260.
Megonigal, J.P., Hines, J.P., and Visscher, P.T., 2003. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. In: Holland, H.D., Turekian, K.K., and Schlesinger, W.H. (Eds.), Treatise on Geochemistry. Biogeochemistry, Vol.8 Elsevier-Pergamon, Oxford, 317-424, 2003.
Middelburg, J.J., Klaver, G., Nieuwenhuize, J., Wielemaker, A., Hass, W., Vlug, T., and van der Nat, J.F.W.A., 1996. Organic matter mineralization in intertidal sediments along an estuarine gradient. Marine Ecology Progress Series, 132, 157-168.
Middelburg, J.J., Klaver, G., Nieuwenhuize, J., Wielemaker, A., Hass, W., Vlug, T., and van der Nat, J.F.W.A., 1996. Organic matter mineralization in intertidal sediments along an estuarine gradient. Marine Ecology Progress Series, 132, 157-168.
Mikkela, C., Sundh, I., Svensson, B.H., and Nilsson, M., 1995. Diurnal variation in methane emissions in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochemistry, 28, 93-114.
Mitra, S., Mitra, R., Wassmann, P., and Vlek, G., 2005. An appraisal of global wetland area and its organic carbon stock. Current Science, 88, 25-35.
Mitsch, W.J. and Gosselink, J.G. 2007. Wetlands. John Wiley & Sons, Inc 177-188.
Mitsch, W.J. and Gosselink, J.G., 2007. Wetlands. 4th ed. Wiley, New York.
Mitsuru, H., Yukiko, S., Yasushi, S., Seiichi, N., and Hidenobu, K., 2007. Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere, 68, 597-603.
Moore, T.R. and Dalva, M., 1993. The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. European Journal of Soil Science, 44, 651-604.
Moore, T.R. and Dalva, M., 1993. The influences of temperature and watertable position on carbon dioxide and methane emissions from laboratory columns of peatland soils. European Journal of Soil Science, 44, 651-664.
Myhre, G., Shindell, D., Bre´on, F.M., Collins, W., Fuglestvedt, J.S., Huang, J., Koch, D., Lamarque, J.F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H., 2013a. Anthropogenic and natural radiative forcing. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, PM. (Eds). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK, Cambridge University Press, 659-740.
Myhre, G., Shindell, D., Bre´on, F.M., Collins, W., Fuglestvedt, J.S., Huang, J, Koch, D., Lamarque, J.F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H., 2013b. Anthropogenic and natural radiative forcing, Supplementary Material. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Available from www.climatechange2013.org and www.ipcc.ch. 8SM1-44.
Pan, C.W., Chuang, Y.L., Chou, L.S., Chen, M.H., and Lin, H.J., 2016. Factors governing phytoplankton biomass and production in tropical estuaries of western Taiwan, Continental Shelf Research, 118, 88-99.
Park, K.Y., Inamorim Y., Mizuochim M., and Ahn K.H., 2000. Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration. Journal of Bioscience and Bioengineering, 90 (3), 247-252.
Piceka, T., Cizkova, H., and Duseka, J., 2007. Greenhouse gas emissions from a constructed wetland-Plants as important sources of carbon. Ecological Engineering, 31, 98-106.
Pumpanen, J., Kolari, P., and Ilvesniemi, H., 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agricultural and Forest Meteorology, 123, 159-176.
Ramsar Convention, 1971.
Rassamee, V., Sattayatewa, C., Pagilla, K., and Chandran, K., 2011. Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes. Biotechnology and Bioengineering, 108 (8), 2036-2045.
Sasitorn, P., Akira, K., Aki, T., Tanuwong, S., Chatree, M., and Shogo, K., 2009. Paisarn tanapermpool and pipat patanaponpaiboon. carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand. Journal of Tropical Ecology, 25(4), 393-400, DOI 10.1017/S0266467409006154.
Sass, R.L., Fisher, F.M., Turner, F.T., and Jund, M.F., 1991. Methane emission from rice fields as influenced by solar radiation, temperature and straw incorporation. Global Biogeochemical Cycles, 5, 335-350.
Schimel, J., 2000. Rice, microbes and methane. Nature, 403, 375-377.
Schrier-Uijl, A.P., Varaart, A.J., Leffelaar, P.A., Berendse, F., and Veenendaal, E.M., 2010. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands. Biogeochemistry, 102, 265-279.
Schulthess, R.V., Kuehni, M., and Gujer, W., 1995. Release of nitric and nitrous oxides from denitrifying activated sludge. Water Research, 29, 215-226.
Senga, Y., Seike, Y., Mochida, K., Fujinaga, K., and Okumura, M., 2001. Nitrous oxide in Lakes Shinji and Nakaumi, Japan. Limnology, 2, 129-136.
Sharon, M.L.E., Evelyn, E.G., Daniel, L.C., David. I.,Victor, H.R.M., and Robert, R.T., 2006. Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia, 569:459-474.
Shih, S.S., Hsieh, H.L., Chen, P.H., Chen, C.P., and Lin, H.J., 2015, Tradeoffs between reducing flood risks and storing carbon stocks in mangroves, Ocean and Coastal Management, 105, 116-126.
Sommerfeld, R.A., Mosier, A.R., and Musselman, R.C., 1993. CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature, 361, 140-142.
Song, C., Zhang, J., Wang, Y., Wang, Y., and Zhao, Z., 2008. Emission of CO2, CH4 and N2O from freshwater marsh in northeast China. Journal of Environmental Management, 88, 428-436.
Søvik, A.K. and Kløve, B., 2007. Emission of N2O and CH4 from a.constructed wetland in southeastern Norway. Science of the Total Environment, 380, 28-37.
Søvik, A.K., Augustin, J., Heikkinen, K., Huttunen, J.T., Necki, J.M., Karjalainen, S.M., Kløve, B., Liikanen, A., Mander, Ü., Puustinen, M., Teiter, S., and Wachniew, P., 2006. Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. Journal of Environmental Quality, 35, 2360-2373.
Stadmark, J. and Leonardson, L., 2005. Emissions of greenhouse gases from ponds constructed for nitrogen removal. Ecological Engineering, 25, 542-551.
Stutzer, H. and Hartleb, R., 1894. Uber nitratbidung. Zentralbl Bakteriol Parasitenkd Infektionskr. Hyg Abt 1 Orig Reihe A, 22, 701-703.
Tai, P.D., Li, P.J., Sun, T.H., He, Y.W., Zhou, Q. X., Gong, Z.Q., Mizuochi, M., and Inamori, Y., 2002. Greenhouse gas emissions from a constructed wetland for municipal sewage treatment. Journal of Environmental Sciences, 14, 27-33.
Tallec, G., Garnier, J., and Billen, G., 2008. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation, Bioresource Technology, 99, 2200-2209.
Tanner, C.C., Adams, D.D., and Downes, M.T., 1997. Methane emissions from constructed wetlands treating agricultural wastewaters. Journal of Environmental Quality, 26, 1056-1062.
Teiter, S. and Mander, Ü., 2005. Emission of N2O, N2, CH4 and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones. Ecological Engineering, 25(5), 528-41.
Tong, C., Huang, J.F., Hu, Z.Q., and Jin, Y.F., 2013. Diurnal variations of carbon dioxide, methane, and nitrous oxide vertical fluxes in a subtropical estuarine marsh on neap and spring tide days. Estuaries and Coasts, 36, 633-642.
Tong, C., Wang, C., Huang, J.F., Wang, W.Q., Ya, E., Liao, J., and Yao, C., 2014. Ecosystem respiration does not differ before and after tidal inundation in brackish marshes of the min river estuary. Southeast China. Wetlands, 34, 225-233.
Trumbore, S.E., Bubier, J.L., Harden, J.W., and Grill, P.M., 1999. Carbon cycling in boreal wetlands: A comparison of three approaches. Journal of Geophysical Research, 104 (D22), 27,673-682.
U.S. Environmental Protection Agency, 2000. Manual for Constructed Wetlands Treatment of Municipal Wastewaters. EPA/625/R-99/010, Cincinnati.
Updegraff, K., Bridgham, S.D., Pastor, J., Weishampel, P., and Harth, C., 2001. Response of CO2 and CH4 emissions from peatlands to warming and watertable manipulation. Ecological Society of America, 11, 311-326.
van Hulzen, J.B., Segers, R., van Bodegom, P.M., and Leffelaar, P.A., 1999. Temperature effects on soil methane production: an explanation for observed variability. Soil Biology and Biochemistry, 31, 1919-1929.
Van Loosdrecht, M.C.M. and Salem, S., 2006. Biological treatment of sludge digester liquids. Water Science and Technology, 53 (12). 11-20,
Waddington, J.M. and Roulet, N.T., 2000. Carbon balance of a boreal patterned peatland. Global Biogeochemical Cycles, 6, 87-97.
Wang, Z.P. and Han, X.G., 2005. Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes. Atmospheric Environment, 39(34), 6295-6305.
Wang, Z.P., DeLaune, R.D., Patrick, W.H., and Masscheleyn, P.H. Jr., 1993. Soil redox and pH effects on methane production in a flooded rice soil. Soil Science Society of America Journal, 57, 382-385.
Watanabe, A., Yamada, H., and Kimura, M., 2005. Analysis of temperature effects on seasonal and interannual variation in CH4 emission from rice-planted pots. Agriculture, Ecosystems & Environment, 105, 439-443.
Whiting, G.J. and Chanton, J.P., 1992. Plant-dependent CH4 emission in a subarctic Canadian fen. Global Biogeochemical Cycles, 6, 225-231.
Whiting, G.J. and Chanton, J.P., 1996. Control of the diurnal pattern of methane emissions from emergent aquatic macrophytes by gas transport mechanism. Aquatic Botany, 54, 237-253.
Wijler, J. and Delwiche, C.C., 1954. Investigations on the denitrifying process in soil. Plant and Soil, 5, 155-169.
Xu, X.F., Tian, H.Q., Liu, M.L., Ren, W., Lu, C.Q., and Zhang, C., 2012. Multiple-factor controls on terrestrial N2O flux over North America from 1979 through 2010. Biogeosciences, 9, 1351-1366.
Xu, X.F., Tian, H.Q., Zhang, C., Liu, M.L., Ren, W., Chen, G.S., Lu, C.Q., and Bruhwiler, L., 2010. Attribution of spatial and temporal variations in terrestrial methane flux over North. America. Biogeosciences, 7, 3637-3655.
Yam, R.S.W., Huang, K.P., Hsieh, H.L., Lin, H.J., and Huang, S.C., 2015. An ecosystem-service approach to evaluate the role of non-native species in urbanized wetlands, International Journal of Environmental Research and Public Health, 12, 3926-3943.
Yang, W.B., Chen, W.H., Yuan, C.S., Yang, J.C., and Zhao, Q.L., 2012. Comparative assessments of VOC emission rates and associated health risks from wastewater treatment processes. Journal of Environmental Monitoring, 14, 2464-2474.
Yang, W.B., Yuan, C.S., Chen, W.H., Yang, Y.H., and Hung, C.H., 2017. Diurnal variation of greenhouse gas emission from petrochemical wastewater treatment processes using in-situ continuous monitoring system and the associated effect on emission factor estimation. Aerosol and Air Quality Research, 17, 2608-2623.
Yang, W.B., Yuan, C.S., Tong, C., Yang, P., Yang, L., and Huang, B.Q., 2017. Diurnal variation of CO2, CH4, and N2O emission fluxes continuously monitored in-situ in three environmental habitats in a subtropical estuarine wetland. Marine Pollution Bulletin, 119, 289-298.
Yu, R. and Chandran, K., 2010. Strategies of Nitrosomonas europaea 19718 to counter low dissolved oxygen and high nitrite concentrations. Bio Med Central Microbiology, 10(1), 70-81.
Zhuang, Q., Melillo, J.M., Kicklighter, D.W., Prinn, R.G., McGuire, A.D., Steudler, P.A., Felzer, B.S., and Hu, S., 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochemical Cycles, 18, GB3010, doi:10.1029/2004GB002239.
Zou, J.W., Huang, Y., Zheng, X.H., Wang, Y., and Chen, Y.Q., 2004. Static opaque chamber-based technique for determination of net exchange of CO2 between terrestrial ecosystem and atmosphere. Chinese Science Bulletin, 49, 381-388.
Jiang, G.M., Gutierrez, O., Sharma, K.R., Yuan, Z.G., 2010. Effect of nitrite concentration and exposure time on sulfide and methane production in sewer system. Water Research, 44(14), 4241-4251.
Wang, J.H., Zhang, J., Xie, H.J., Qi, P.G., Ren, Y.A., and Hu, Z., 2011. Methane emissions from a full-scale A/A/O wastewater treatment plant. Bioresource Technology, 102(9), 5479-5485.
Patra, P.K., Lal, S., Venkataramani, S., de Sousa, S.N., Sarma, V.V.S.S., and Sardesai, S., 1999. Seasonal and spatial variability in N2O distribution in the Arabian sea. Deep-Sea Research I, 46, 529-543.
Lin, H., Zhou, G., Li, X., Zhou, J., Zhang, T., and Wang, G., 2013. Greenhouse gases emissions from pond culture ecosystem of Chinese mitten crab and their comprehensive global warming potentials in summer. Journal of Fisheries of China, 37(3), 417-424.
Rantakari, M., and Kortelainen, P., 2005. Interannual variation and climatic regulation of the CO2 emission from large boreal lakes. Journal of Global Change Biology, 11(8), 1368-1380.
Schrier-Uijl, A.P., Veraart, A.J., Leffelaar, P.A., Berendse, F., and Veenendaal, E.M., 2011. Release of CO2 and CH4 from lakes and drainage ditches in temperate wetland. Biogeochemistry, 102, 265-279.
Zheng, H., Hanaki, K., and Matsuo, T., 1994. Production of nitrous oxide gas during nitrification of wastewater. Water Science and Technology, 30(6) 133-141.
內政部營建署,國家重要濕地碳匯功能調查計畫報告書,2011。
李偉搖,“台灣南部自然濕地甲烷釋出係數之研究”,崑山科技大學環境工程系碩士論文,2010。
林幸助、薛美莉、何東輯、陳添水,濕地生態系生物多樣性監測系統標準作業程序,農委會特有生物中心,2009。
林瑩峰、荊樹人、劉瑞美、張翊峰、賴建志,人工濕地之甲烷及氧化亞氮空間變化,廢水處理技術研討會,2008。
姜春足,“急水溪河口紅樹林濕地碳匯之初探”,崑山科技大學進修部環境工程研究所碩士論文,2013。
陳怡伶,“以複合式水平流人工濕地處理中高埋齡垃圾滲出水之研究”,國立中山大學海洋環境及工程學系碩士論文,2006。
陳家璽,“南臺灣淡水埤塘與鹹水潟湖溫室氣體通量之調查”,嘉南藥理科技大學環境工程與科學研究所碩士論文,2002。
陳勝松,“垃圾掩埋場沼氣處理發電之研究-以臺北市垃圾掩埋場為例”,國立台北科技大學環境工程與管理研究所碩士論文,2008。
黃山內、劉瑞美、林經偉,“台灣南部水稻田之甲烷釋放與減量對策,國科會專題研究計畫成果報告書”,計畫編號:NSC88-EPA-Z-067F-001,1999。
楊盛行、劉清標、陳顗竹、張讚昌、魏嘉碧、賴朝明、王銀波、趙震慶、張哲明、王樹倫、陳鎮東,“台灣河川湖泊濕地甲烷及氧化亞氮排放量測”,全球變遷通訊雜誌,40,59-71,2003。
萬鑫偉,“七股鹽田濕地潮間帶灘地初級生產量及溫室氣體通量調查”,嘉南藥理科技大學環境工程與科學研究所碩士論文,2012。
賴建志,“人工濕地之甲烷及氧化亞氮釋放研究”,嘉南藥理科技大學環境工程與科學研究所碩士論文,2008。
錢元皓,“台灣水田、旱田與濕地土壤氧化亞氮之釋放通量及其減量對策”,國立台灣大學農業化學研究所碩士論文,2003。
濱本亞希,“利用污水處理程序模廠調查N2O之產生”,第48回日本下水道研究發表會,2011。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code