Responsive image
博碩士論文 etd-0003118-171319 詳細資訊
Title page for etd-0003118-171319
論文名稱
Title
以生物絮凝技術改善養殖用水環境之研究
Apply Biofloc Technology to Improve Aquaculture Water Environment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-12-26
繳交日期
Date of Submission
2018-01-11
關鍵字
Keywords
生物絮凝技術、營養鹽、水質改善、吳郭魚養殖、碳氮比
water treatment, nutrients, tilapia, C/N ratio, Biofloc technology
統計
Statistics
本論文已被瀏覽 5681 次,被下載 1111
The thesis/dissertation has been browsed 5681 times, has been downloaded 1111 times.
中文摘要
臺灣西南沿海地區養殖漁業發達,養殖用水經常以海水與淡水混和呈半鹹水,並且養殖用水經常利用外海海水換水,排放出去的養殖廢水可能帶有高濃度的營養鹽,影響沿岸地區水質狀況,例如沿海優養化狀況,換水的過程中也有可能帶入海洋中的病菌使得養殖生物感染疾病風險提高,為了降低換水的對沿岸的污染以及養殖生物的感染病菌風險,本研究利用生態工法的方式來降低換水頻率以及降低養殖池中營養鹽的累積。
本研究以生物絮凝技術(BFT,biofloc technology)用於養殖用水,並研究傳統養殖用水與生物絮凝技術加入的不同,生物絮凝技術是利用水體中微生物偏好高碳氮比環境,在養殖池水中額外添加有機碳,提高水體碳氮比,微生物增加後聚集會絮凝在一起,成為比較大顆粒態的微生物,絮凝物大小可達0.1毫米至數毫米,且絮凝物組成包含藻類、原生動物類、浮游生物、輪蟲等,許多魚蝦可攝食大小介於0.1~3mm左右的絮凝物,藉由微生物會代謝無機氮的特性,轉化無機氮成為微生物的蛋白質可成為養殖額外的蛋白質補充。
本研究選定吳郭魚養殖,因為吳郭魚的環境耐受度較高,且吳郭魚為國內養殖大宗,研究分別以控制組與兩組實驗組碳氮比分別為10.71、15.00、20.00進行養殖,實驗結果顯示,實驗組的魚對飼料的同化率皆高於控制組,對於水質的控制可發現生物絮凝技術的加入會使得水體總氨氮比一般養殖水體來得高,但無機氮會比較低,有機氮較高。
本研究利用生物絮凝技術移除水中總氮,利用絮凝物裡的異營性微生物在提高碳氮比後利用有機氮增加絮凝物量,當碳氮比下降後轉而自營性微生物消耗無機氮的特性,實驗結果顯示生物絮凝的處理時間快速,兩實驗組約6小時可使總氨氮降低61.5%與40.43%,使無機氮被利用轉化成絮凝物的生物蛋白,經由過濾去除實驗結果顯示碳氮比在15時可去除總氮71.95%,碳氮比20時去除55.92%,但因使用不織布以重力流方式過濾,雖過濾效果較不穩定,但水體如未經過濾會因絮凝物的死亡進入水體再經過被礦化,使得總氨氮濃度再度升高。
研究成果顯示生物絮凝技術的應用發現吳郭魚確實會利用絮凝物當作食物,提升飼料同化率,並穩定水質;當魚塭水質有狀況時也可在短時間內添加有機碳,利用絮凝物消耗過多的無機氮再過濾穩定。
Abstract
Aquaculture is widely developed in Taiwan western coast. Brackish water and seawater are common water sources. Aquaculture effluents contain high concentration of nutrients to affect water quality in coastal area and often causing the eutrophication. The process of bring in external water can introduce germs into the culture ponds, which increase the risk of culture objects infect diseases. In order to solve these problems, this research apply the ecological engineering technology to decrease the frequency of replacing water and to decrease the accumulation of nutrients in ponds.
This research used Biofloc Technology (BFT) to improve aquaculture water environment. The differences between traditional method and biofloc technology for aquaculture are identified. Biofloc technology is based on the usage of microorganisms in the water that prefer high C/N ratio environment. Extra organic carbon is added into the pond in order to increase the C/N ratio. Large particles formed by the increasing amount of microorganisms, called biofloc. Floc size range from 0.1 mm to a few millimeters, which consist of algae, protozoa, plankton and rotifers. Many fish and shrimp can ingest the flocs, which size between 0.1 to 3mm. This can be served as an extra protein supply.
Tilapia was selected for this study because its high environmental tolerance, and it is the major domestic breeding species in Taiwan. The study was divided into a control group and two experimental groups, with C / N ratios of 10.71, 15 and 20, respectively. Results show that the experimental groups have higher feed assimilation rate than the control group. TAN and organic nitrogen could be higher than traditional aquaculture pond by using biofloc technology, however the inorganic nitrogen is lower.
Biofloc technology in this study has shown its function on removing total nitrogen in culture water. Heterotrophic microorganisms in flocs degrade organic matter after increase C/N ratio and, thus, the amount of flocs are increased too. When the C / N ratio decreases, the autotrophic microorganisms in the flocs consume inorganic nitrogen. The experimental results show that biofloc treatment is efficient on quick improvement of water quality. Two experimental groups can reduce TAN 61.5% and 40.43% within 6 hours. After filtering, 71.95% of total nitrogen can be removed with C/N=15 and 55.92% can be removed with C/N=20. The death floc will be remineralized that causing the total ammonia concentration increased again, if not filtered.
In this study, it is observed that tilapia did use flocs as food which enhancing the feed assimilation rate and stabilizing the water quality. Therefore, add extra organic carbon and remove part of the flocs can quickly improve the water quality when the water quality become unstable in the aquaculture ponds.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract v
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 養殖水質 3
2.1.1 水溫、溶氧、鹽度以及酸鹼值對養殖水質的影響 3
2.1.2 氨氮、亞硝酸鹽及硝酸鹽對於養殖水質的影響 4
2.1.3 氮循環 6
2.1.4 物理性質與氨氮毒性的關係 9
2.1.5 物理性質與亞硝酸毒性的關係 10
2.1.6 磷對於養殖水質的影響 10
2.1.7 養殖池中的碳循環 11
2.1.8 藻類對於養殖水質的關係 11
2.2 生物處理法 12
2.2.1 生物絮凝 13
2.2.2 生物絮凝的機制 14
2.2.3 生物絮凝的實驗案例 14
2.2.4 生物絮凝的理論 15
2.2.5 生物絮凝的注意事項 16
2.3 白蝦養殖基礎 17
2.3.1 白蝦對水質的要求 18
2.3.2 白蝦生長週期 19
2.4 吳郭魚養殖背景 20
2.4.1 吳郭魚水質要求 20
2.4.2 吳郭魚餵食 21
2.4.3 利用生物絮凝飼養吳郭魚 21
第三章 研究方法 23
3.1 實驗流程 23
3.2 生物絮凝實驗設計 24
3.2.1 生物絮凝測試 24
3.2.2 生物絮凝模槽測試(一)-白蝦 25
3.2.3 生物絮凝模槽測試(二)-吳郭魚 27
3.3 採樣與分析方法 29
3.3.1 水質檢測方法概(NIEA) 29
3.3.2 採樣與保存 31
3.3.3 水質分析與分析方法 32
3.4 統計分析 34
第四章 結果與討論 35
4.1 生物絮凝測試 35
4.1.1 生物絮凝測試小結 44
4.2 生物絮凝模槽測試(一)-白蝦 45
4.2.1 生物絮凝模槽測試(一)小結 54
4.3 生物絮凝模槽測試(二)-吳郭魚 55
4.3.1 實驗水質穩定分析 61
4.3.2 第一次提高碳氮比探討 65
4.3.3 提高碳氮比後水質變化 70
4.3.4 第二與第三次提高碳氮比探討 71
4.3.5 生物絮凝模槽測試(二)顯微觀察 73
4.3.6 生物絮凝模槽測試(二)小結 77
4.4 絮凝物、懸浮固體以及有機氮的關係 78
4.5 生物絮凝氮通量計算 82
4.6 生物絮凝是否能取代飼料 86
第五章 現地實際應用 89
5.1 生物絮凝技術現地實際應用 89
5.1.1 現地魚塭設計 89
5.2 生物絮凝與傳統養殖成本差異 91
第六章 結論與建議 92
6.1 結論 92
6.2 建議 93
參考文獻 94
參考文獻 References
Alkemadea, J.R.M, J.J.M., V. G., Wiertz, J., & Kros, J. (1998). Towards integrated national modelling with particular referenceto the environmental effects of nutrients. Environmental Pollution, 102(1), 101–105.
Araneda, M., Pavez, J., Luza, B., & Jeison, D. (2017). Use of activated sludge biomass as an agent for advanced primary separation. J Environ Manage, 192, 156–162. https://doi.org/10.1016/j.jenvman.2017.01.030
Asaduzzaman, M., Rahman, M. M., Azim, M. E., Islam, M. A., Wahab, M. A., Verdegem, M. C. J., & Verreth, J. A. J. (2010). Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, 306(1–4), 127–136. https://doi.org/10.1016/j.aquaculture.2010.05.035
Avnimelech, Y. (1999). Carbon/rnitrogen ratio as a control element inaquaculture systems. Aquacultural, 176, 253–277.
Avnimelech, Y. (2006). Bio-filters: The need for an new comprehensive approach. Aquacultural Engineering, 34(3), 172–178. https://doi.org/10.1016/j.aquaeng.2005.04.001
Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1–4), 140–147. https://doi.org/10.1016/j.aquaculture.2006.11.025
Avnimelech, Y. (2011). Tilapia production using biofloc technology (BFT). In LIPING, FITZSIMMONS. Better science, better fish, better life. Proceedings of the Ninth International Symposium on Tilapia in Aquaculture. United States: AQUAFISH Collaborative Research Support Program (Vol. 359, p. 361).
Azevedo, L. B., vanZelm, R., Leuven, R. S., Hendriks, A. J., & Huijbregts, M. A. (2015). Combined ecological risks of nitrogen and phosphorus in European freshwaters. Environ Pollut, 200, 85–92. https://doi.org/10.1016/j.envpol.2015.02.011
Buentello, J. A., Gatlin, D. M., & Neill, W. H. (2000). Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus). Aquaculture, 182(3), 339–352. https://doi.org/https://doi.org/10.1016/S0044-8486(99)00274-4
Burford, M. A., Thompson, P. J., McIntosh, R. P., Bauman, R. H., & Pearson, D. C. (2004). The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture, 232(1–4), 525–537. https://doi.org/10.1016/s0044-8486(03)00541-6
Caldini, N., Cavalcante, D., Rocha Filho P., & Sá, M. (2015). Feeding Nile tilapia with artificial diets and dried bioflocs biomass. Animal Sciences, 37 (4), 335. https://doi.org/10.4025/actascianimsci.v37i4.27043
Costa, L. D. F., Miranda-Filho, K. C., Severo, M. P., & Sampaio, L. A. (2008). Tolerance of juvenile pompano Trachinotus marginatus to acute ammonia and nitrite exposure at different salinity levels. Aquaculture, 285(1–4), 270–272. https://doi.org/10.1016/j.aquaculture.2008.08.017
Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., & Verstraete, W. (2007). Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270(1–4), 1–14. https://doi.org/10.1016/j.aquaculture.2007.05.006
DeSchryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3–4), 125–137. https://doi.org/10.1016/j.aquaculture.2008.02.019
De-Bashan, L. E., & Bashan, Y. (2004). Recent advances in removing phosphorus from wastewater and its future use as fertilizer (1997–2003). Water Res, 38(19), 4222–4246. https://doi.org/http://dx.doi.org/10.1016/j.watres.2004.07.014
Defoirdt, T., Halet, D., Vervaeren, H., Boon, N., Van deWiele, T., Sorgeloos, P., & Verstraete, W. (2007). The bacterial storage compound poly-beta-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii. Environ Microbiol, 9(2), 445–452. https://doi.org/10.1111/j.1462-2920.2006.01161.x
DellaSala, D. A. (2018). The Carbon Cycle and Global Change: Too Much of a Good Thing, 7–10. https://doi.org/10.1016/b978-0-12-809665-9.05874-2
Diaz, R. J., & Rosenberg, R. (1995). Marine benthic hypoxia: a review its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology, (33), 245–303.
Dutra, F. M., Forneck, S. C., Brazão, C. C., Freire, C. A., & Ballester, E. L. C. (2016). Acute toxicity of ammonia to various life stages of the Amazon river prawn, Macrobrachium amazonicum, Heller, 1862. Aquaculture, 453, 104–109. https://doi.org/10.1016/j.aquaculture.2015.11.038
Claud, E., & Boyd. (1998). Pond Aquaculture Water Quality Management.
Ekasari, J., Crab, R., & Verstraete, W. (2010). Primary Nutritional Content of Bio-Flocs Cultured with Different Organic Carbon Sources and Salinity. HAYATI Journal of Biosciences, 17(3), 125–130. https://doi.org/10.4308/hjb.17.3.125
Encyclopedia-dictionary. (n.d.). Tilapia Culture. Retrieved from http://aqua-culture.blogspot.tw/2007/02/tilapia-culture.html
Ferreira, J. G., Andersen, J. H., Borja, A., Bricker, S. B., Camp, J., Cardoso da Silva, M., & Claussen, U. (2011). Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuarine, Coastal and Shelf Science, 93(2), 117–131. https://doi.org/10.1016/j.ecss.2011.03.014
Gschlobl, T., Steinmann, C., Schleypen, P., & Melzer, A. (1998). Constructed wetlands for effluent polishing of lagoons. Water Research, 32(9), 2639–2645.
Hodzic, E. (2011). Total organic carbon (TOC) and chemical oxygen demand (COD) - Monitoring of organic pollutants in wastewater. Uppsala.
Holland Aleicia, Leo J. Duivenvoorden, & Susan H. W. Kinnear. (2013). The double-edged sword of humic substances: contrasting their effect on respiratory stress in eastern rainbow fish exposed to low pH. Environmental Science and Pollution Research, 21(3), 1701–1707.
Jørgensen, N. O. G. (2009). Organic Nitrogen. In Encyclopedia of Inland Waters (pp. 832–851). Oxford: Academic Press. https://doi.org/https://doi.org/10.1016/B978-012370626-3.00119-8
Kır, M., Kumlu, M., & Eroldoğan, O. T. (2004). Effects of temperature on acute toxicity of ammonia to Penaeus semisulcatus juveniles. Aquaculture, 241(1–4), 479–489. https://doi.org/10.1016/j.aquaculture.2004.05.003
Knepp, G. L., & Arkin, G. F. (1973). Ammonia Toxicity Levels and Nitrate Tolerance of Channel Catfish. The Progressive Fish-Culturist, 35(4), 221–224. https://doi.org/10.1577/1548-8659(1973)35[221:ATLANT]2.0.CO;2
Komorowska-Kaufman, M., Majcherek, H., & Klaczyński, E. (2006). Factors affecting the biological nitrogen removal from wastewater. Process Biochemistry, 41(5), 1015–1021. https://doi.org/10.1016/j.procbio.2005.11.001
Kroupova, H., Machova, J., Piackova, V., Blahova, J., Dobsikova, R., Novotny, L., & Svobodova, Z. (2008). Effects of subchronic nitrite exposure on rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf, 71(3), 813–820. https://doi.org/10.1016/j.ecoenv.2008.01.015
Lewis, W. M., & Morris, D. P. (1986). Toxicity of nitrite to fish: A review. Transactions of the American Fisheries Society, 115(2), 183–195.
Li, Y., & Boyd, C. E. (2016). Laboratory tests of bacterial amendments for accelerating oxidation rates of ammonia, nitrite and organic matter in aquaculture pond water. Aquaculture, 460, 45–58. https://doi.org/10.1016/j.aquaculture.2016.03.050
Liew, H. J., Sinha, A. K., Nawata, C. M., Blust, R., Wood, C. M., & DeBoeck, G. (2013). Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Aquat Toxicol, 126, 63–76. https://doi.org/10.1016/j.aquatox.2012.10.012
Liu, L., Hu, Z., Dai, X., & Avnimelech, Y. (2014). Effects of addition of maize starch on the yield, water quality and formation of bioflocs in an integrated shrimp culture system. Aquaculture, 418–419, 79–86. https://doi.org/10.1016/j.aquaculture.2013.10.005
Luo, G., Gao, Q., Wang, C., Liu, W., Sun, D., Li, L., & Tan, H. (2014). Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture, 422–423, 1–7. https://doi.org/10.1016/j.aquaculture.2013.11.023
Magoulick, D. D., & Kobza, R. M. (2003). The role of refugia for fishes during drought a review and synthesis. Freshwater Biology.
Meinelt, T., Kroupova, H., Stüber, A., Rennert, B., Wienke, A., & Steinberg, C. E. W. (2010). Can dissolved aquatic humic substances reduce the toxicity of ammonia and nitrite in recirculating aquaculture systems? Aquaculture, 306(1–4), 378–383. https://doi.org/10.1016/j.aquaculture.2010.06.007
Meyer-Reil, L.-A., & Köster, M. (2000). Eutrophication of Marine Waters: Effects on Benthic Microbial Communities. Marine Pollution Bulletin, 41(1–6), 255–263. https://doi.org/http://dx.doi.org/10.1016/S0025-326X(00)00114-4
Mitsch, W. J., & Gosselink, james G. (2000). Wetlands 3rd edition.
Mizanur Md, R., Yun, H., Moniruzzaman, M., Ferreira, F., Kim, K. W., & Bai, S. C. (2014). Effects of Feeding Rate and Water Temperature on Growth and Body Composition of Juvenile Korean Rockfish, Sebastes schlegeli (Hilgendorf 1880). Asian-Australas J Anim Sci, 27(5), 690–699. https://doi.org/10.5713/ajas.2013.13508
Moss M S, S, D., & Kim B G. (2001). Stimulating effects of pond water on digestiveenzyme activity in the Pacific white shrimp, Litopenaeus vannamei (Boone). Aquacultural, (32), 125–131.
Nancy J Thiex, Harold Manson, Shirley Andersson, & Persson, J.-Å. (2002). Determination of crude protein in animal feed forage grain and oilseeds by using block digestion with a copper catalyst and steam distillation into boric acid: collaborative-study. AOAC.
Pell, M., & Wörman, A. (2011). Biological wastewater treatment systems. In Comprehensive Biotechnology (Second Edition) (pp. 275–290). Burlington: Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-088504-9.00381-0
Prathumchai, N., Polprasert, C., & Englande Jr., A. J. (2016). Phosphorus leakage from fisheries sector - A case study in Thailand. Environ Pollut, 219, 967–975. https://doi.org/10.1016/j.envpol.2016.09.081
Quispe, R. L., Justino, E. B., Vieira, F. N., Jaramillo, M. L., Rosa, R. D., & Perazzolo, L. M. (2016). Transcriptional profiling of immune-related genes in Pacific white shrimp (Litopenaeus vannamei) during ontogenesis. Fish Shellfish Immunol, 58, 103–107. https://doi.org/10.1016/j.fsi.2016.09.024
Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Marine Pollution Bulletin, 45, 17–23.
Saha, N., Kharbuli, Z. Y., Bhattacharjee, A., Goswami, C., & Häussinger, D. (2002). Effect of alkalinity (pH 10) on ureogenesis in the air-breathing walking catfish, Clarias batrachus. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 132(2), 353–364. https://doi.org/https://doi.org/10.1016/S1095-6433(02)00044-2
Sandu, S., & Hallerman, E. (2013). Biodegradation of Nitrogen in a Commercial Recirculating Aquaculture Facility. BioTechnology, 341–364. https://doi.org/10.5772/50829
Schindler, D. W., Hecky, R. E., Findlay, D. L., Stainton, M. P., Parker, B. R., Paterson, M. J., & Kasian, S. E. (2008). Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci U S A, 105(32), 11254–11258. https://doi.org/10.1073/pnas.0805108105
Strock, J. S. (2008). Ammonification. In B. D.Fath (Ed.), Encyclopedia of Ecology (pp. 162–165). Oxford: Academic Press. https://doi.org/https://doi.org/10.1016/B978-008045405-4.00256-1
Sun, H., Li, J., Tang, L., & Yang, Z. (2012). Responses of crucian carp Carassius auratus to long-term exposure to nitrite and low dissolved oxygen levels. Biochemical Systematics and Ecology, 44, 224–232. https://doi.org/10.1016/j.bse.2012.06.011
Third, K. A., Sliekers, A. O., Kuenen, J. G., & Jetten, M. S. M. (2001). The CANON System (Completely Autotrophic Nitrogen-removal Over Nitrite) under Ammonium Limitation: Interaction and Competition between Three Groups of Bacteria. Systematic and Applied Microbiology, 24(4), 588–596. https://doi.org/http://dx.doi.org/10.1078/0723-2020-00077
Thompson, F. L., Abreu, P. C., & Wasielesky, W. (2002). Importance of biofilm for water quality and nourishment in intensive shrimp culture. Aquaculture, 203(3), 263–278. https://doi.org/https://doi.org/10.1016/S0044-8486(01)00642-1
Wasielesky, W., Atwood, H., Stokes, A., & Browdy, C. L. (2006). Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture, 258(1–4), 396–403. https://doi.org/10.1016/j.aquaculture.2006.04.030
Wei, Y., Liao, S.-A., & Wang, A. (2016). The effect of different carbon sources on the nutritional composition, microbial community and structure of bioflocs. Aquaculture, 465, 88–93. https://doi.org/10.1016/j.aquaculture.2016.08.040
Wheaton, F. W., Hochheimer, J. N., Kaiser, G. E., & Krones, M. J. (1991). principles of biological filtration.
Whiteman, M. D., Kahl, D. M., Rau, M. D., Balcer, G. T., & Ankley. (1996). Evaluation of interstitial water as a route of exposure for ammonia in sediment tests with benthic macroinvertebrates. Environmental Toxicology and Chemistry, 15(5), 794–801.
Wongkiew, S., Hu, Z., Chandran, K., Lee, J. W., & Khanal, S. K. (2017). Nitrogen transformations in aquaponic systems: A review. Aquacultural Engineering, 76, 9–19. https://doi.org/10.1016/j.aquaeng.2017.01.004
Wu, R. S. S. (2001). Consultancy studies on Fisheries and Marine Ecological Criteria for Impact Assessment, Final Report (Environmental Protection Department, Hong Kong Government, SAR, People Republic of China).
Yogev, U., Sowers, K. R., Mozes, N., & Gross, A. (2017). Nitrogen and carbon balance in a novel near-zero water exchange saline recirculating aquaculture system. Aquaculture, 467, 118–126. https://doi.org/10.1016/j.aquaculture.2016.04.029
王海燕, &蔡海軍. (2011). COD 與 TOC 相關性理論研究. Henan University of Urban Construction.
朱皇柏. (2003). 硫酸銅對條紋豆娘魚造成之毒性影響研究. 國立海洋大學.
行政院農業委員會水產試驗所. (n.d.). No Title. Retrieved from http://www.tfrin.gov.tw/mp.asp?mp=1
行政院農業委員會-吳郭魚館. (2016). 吳郭魚的營養需求. Retrieved from https://kmweb.coa.gov.tw/subject/ct.asp?xItem=103339&ctNode=2768&mp=1&kpi=0&hashid
行政院環境保護署. (n.d.). 環境水質「溶氧過飽和」現象說明. Retrieved from https://www.epa.gov.tw/np.asp?ctNode=31293&mp=epa
行政院環境保護署環境檢驗所. (n.d.). 水質檢測方法NIEA. Retrieved from https://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=WATER
佐野和生, 洪聖宗, 上野洋一郎, &秦宗顯. (1997). 循環水工程的關鍵技術 (水產出版社).
柯清水. (2010). 養魚世界第四期 (養魚世界雜誌社).
柯清水. (2016). 養魚先養水. (柯清水, Ed.). 翠湖水草栽培研究所. Retrieved from http://www.tbs-aqua.com.tw/
康浩琳. (2006). 放養密度、內置物及飼料對白蝦不換水養殖之影響. 國立中山大學.
許美論. (2003). 半導體及光電事業排放含氮有機物之生物分解特性研究. 國立中山大學.
陳弘成. (2005). 白蝦室外超高密度之養殖、產量與管理. 水產試驗所特刊, 6, 147–153.
陳國誠. (2002). 廢水生物處理學. 茂昌圖書有限公司.
陳鎮東. (2014). 海洋化學. 臺北市: 茂昌圖書有限公司.
黃瑞珉. (2005). 養殖廢污以龍鬚菜充分利用型之循環水系統設計. 國立台灣大學.
楊雅捷. (2012). 鞍斑海葵魚(Amphirpion polymnus)的初期發育與氨氮、亞硝酸鹽及硝酸鹽之急毒性耐受性研究. 國立東華大學.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code