Responsive image
博碩士論文 etd-0004117-170758 詳細資訊
Title page for etd-0004117-170758
論文名稱
Title
具部分功率調節之串聯太陽能板分散式最大功率追蹤
Distributed Maximum Power Point Tracking for Serial Photovoltaic Panels with Partial Power Regulation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
71
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-12-18
繳交日期
Date of Submission
2017-01-04
關鍵字
Keywords
部分功率調節、串聯太陽能板、部分遮陰、系統全域最大功率追蹤
Serial Photovoltaic Panels, Partial Power Regulation, Partial Shaded Condition, System Global Maximum Power Point Tracking (SGMPPT)
統計
Statistics
本論文已被瀏覽 5671 次,被下載 53
The thesis/dissertation has been browsed 5671 times, has been downloaded 53 times.
中文摘要
為改善太陽能電池發電系統的功率利用率(Power Utilization),本論文提出一個具部分功率調節之串聯太陽能板分散式最大功率追蹤的電路架構。串聯太陽能板除了直接提供負載功率外,另配置返馳式轉換器調節部分功率,執行分散式最大功率追蹤。考量返馳式轉換器的效率,啟動需調節功率之太陽能板的轉換器,可追蹤到系統全域最大功率點(System Global Maximum Power Point, SGMPP)。當串聯太陽能板的部分遮陰程度改變,系統可根據變動後的電壓電流,重新估測SGMPP。
本研究設計一個包含三組配置返馳式轉換器的太陽能板串聯雛型實驗系統,驗證電路理論分析和擬定的SGMPP估測與追蹤流程。實驗顯示,當太陽能板遮陰程度有差異時,系統執行部分功率調節,可追蹤到估測的SGMPP,且估測之SGMPP與量測結果吻合;主電路搭配準確的SGMPP估測,可達良好的功率利用率,且高於傳統市電併聯型與串聯型分散式最大功率追蹤之架構。
Abstract
To improve the power utilization of photovoltaic (PV) system, this thesis proposes a circuit topology with partial power regulation based on distributed maximum power point tracking (DMPPT). The DMPPT is performed on each PV panel by regulating a part of generated power through the attached fly-back converter. By carefully taking account for the efficiencies of the fly-back converters, the system global maximum power point (SGMPP) can be exactly estimated. As the partially shaded condition on the serial PV panels changes, the SGMPP can be re-estimated with the new voltages and currents on the PV panels.
To verify the theoretical analyses of the proposed approach, a laboratory system formed by three serial PV panels with the associated fly-back converters is set up for experimental tests. The tested results demonstrate that the system is capable of executing partial power regulation to track the estimated SGMPP and under partially shaded conditions. As compared to the PV system with PV panels connected directly in series and the conventional DMPPT topology, the proposed approach can achieve a higher power utilization of the PV system with accurate SGMPP estimation.
目次 Table of Contents
目錄
論文審定書 i
致 謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
1-1 研究背景與動機 1
1-2 論文大綱 3
第二章 太陽能板與串聯型分散式最大功率追蹤概述 4
2-1 太陽能板特性簡介 4
2-2 部分遮陰現象 6
2-3 串聯型分散式最大功率追蹤 9
第三章 電路架構分析 11
3-1 電路架構 11
3-2 工作模式 13
3-3 參數推導 17
3-4 根據照度變化調節之系統全域最大功率追蹤流程 21
3-5 系統全域最大功率估測 24
3-6 工作狀態 32
3-7 電路設計步驟 36
第四章 實例驗證 37
4-1 電路規格與實驗設計 37
4-2 電路之電壓電流波形量測 39
4-3 不同工作狀態之電路實測 41
4-4 系統全域最大功率估測驗證 44
4-5 驗證隨照度變化調節之系統全域最大功率追蹤 50
4-6 偵測電路 55
第五章 結論與未來研究方向 56
5-1 結論 56
5-2 未來研究方向 57
參考文獻 58
參考文獻 References
[1] D. Flin and R. Pool, “Great Creations [Alternative Energy],” IEEE Power Engineer, vol. 19, no. 5, pp. 4-17, Oct./Nov. 2005.
[2] S. Rahman, “Green Power: What Is It and Where Can We Find It ? ,” IEEE Power Energy Mag., vol. 1, no. 1, pp. 30-37, Feb. 2003.
[3] B. Cancino, E. Galvez, P. Roth, and A. Bonneschky, “Introducing Photovoltaic Systems into Homes in Rural Chile,” IEEE Technology and Society Mag., vol. 20, no.1, pp. 29-36, Spring 2001.
[4] 歐文生,2008,“台灣太陽能設計用標準日射量之研究”,中華建築學會建築學報,六十四期。
[5] A. O. Converse, “Seasonal Energy Storage in a Renewable Energy System,” Proceedings of IEEE, vol. 100, no. 2, pp. 401-409, Feb. 2012.
[6] M. Rabinowitz, “Power Systems of the Future. I,” IEEE Power Engineering Review, vol. 20, pp. 5-16, Jan. 2000.
[7] “Engineering Guide for Integration of Distributed Generation and Storage into Power Distribution Systems,” EPRI Technical Report TR-100419, Dec. 2000.
[8] H. L. Willis and W. G. Scott, Distributed Power Generation-Planning and Evaluation, Marcel Dekker Inc., New York, 2000.
[9] F. Giraud and Z. M. Salameh, “Steady-State Performance of A Grid-Connected Rooftop Hybrid Wind-Photovoltaic Power System with Battery Storage,” IEEE Transactions on Energy Conversion, vol. 16, no. 1, pp. 1-7, Feb. 2001.
[10] S. Jain and V. Agarwal, “An Integrated Hybrid Power Supply for Distributed Generation Applications Fed by Nonconventional Energy Sources,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 622-631, June 2008.
[11] T. Y. Kim, H. G. Ahn, S. K. Park, and Y. K. Lee, “A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation,” in IEEE International Symposium on Industrial Electronics, vol. 2, pp.1011-1014, June. 2001.
[12] K. Kobayashi, H. Matsuo, and Y. Sekine, “Novel Solar-Cell Power Supply System Using a Multiple-Input DC–DC Converter,” IEEE Transactions on Industrial Electronics, pp. 281-286, vol. 53, no. 1, Feb. 2005.
[13] S. V. Dhople, A. Davoudi, G. Nilles, and P. L. Chapman, “Maximum Power Point Tracking Feasibility in Photovoltaic Energy-Conversion Systems,” in IEEE Applied Power Electronics Conference and Exposition, pp. 2294-2299, Feb. 2010.
[14] G. R. Walker and P. C. Sernia, “Cascaded DC–DC Converter Connection of Photovoltaic Modules,” IEEE Transactions on Power Electronics, vol. 19, no. 4, July. 2004.
[15] E. Román, R. Alonso, P Ibañez, S. Elorduizapatarietxe, and D. Goitia, “Intelligent PV Module for Grid-Connected PV Systems,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, Aug. 2006.
[16] M. Kasper, D. Bortis, and J. W. Kolar, “Classification and Comparative Evaluation of PV Panel Integrated DC-DC Converter Concepts,” IEEE Transactions on Power Electronics, vol. 29, no. 5, May. 2014.
[17] R. Haroun, A. E. Aroudi, A. Cid-Pastor, and L. Martfnez-Salamero, “Sliding Mode Control of Output-Parallel-Connected Two-Stage Boost Converters for PV Systems,” in IEEE International Multi-Conference on Systems, Signals and Devices, pp. 1-6, Feb. 2014.
[18] M. Kasper, S. Herden, D. Bortis, and J. W. Kolar, “Impact of PV String Shading Conditions on Panel Voltage Equalizing Converters and Optimization of a Single Converter System with Overcurrent Protection” in IEEE European Conference on Power Electronics and Applications, pp. 1–10, Aug. 2014.
[19] 翁敏航、楊茹媛、管鴻、晁成虎,“太陽能板:原理、元件、材料、製程與檢測技術”,東華出版社,2012年。
[20] 鍾宜成,“利用串列太陽能板短路電流之全域最大功率追蹤法”,國立中山大學電機工程學系碩士論文,2016年。
[21] 吳財福、張健軒、陳裕愷,“太陽能供電與照明系統綜論”,全華科技圖書股份有限公司,2003年。
[22] T. Tafticht, K. Agbossou, M. L. Doumbia, and A. Cheriti, “An Improved Maximum Power Point Tracking Method for Photovoltaic Systems,” Renewable Energy, vol. 33, no. 7, pp. 1508-1516, July 2008.
[23] E. V. Solodovnik, S. Liu, and R. A. Dougal, “Power Controller Design for Maximum Power Tracking in Solar Installations,” IEEE Transactions on Power Electronics, vol. 19, no. 5, pp. 1295-1304, Sep. 2004.
[24] A. E. Ghitas and M. Sabry, “A Study of the Effect of Shadowing Location and Area on the Si Solar Cell Electrical Parameters,” Vacuum, vol. 81, pp. 475–478, Nov. 2006.
[25] M. Drif, P. J. P´erez, J. Aguilera, and J. D. Aguilar, “A New Estimation Method of Irradiance on a Partially Shaded PV Generator in Grid-Connected Photovoltaic Systems,” Renewable Energy, vol. 33, no. 9, pp. 2048–2056, Sep. 2008.
[26] A. Maki and S. Valkealahti, “Power Loss in Long String and Parallel-Connected Short Strings of Series-Connected Silicon-Based Photovoltaic Modules Due to Partial Shading Conditions,” IEEE Transactions on Energy Conversion, vol. 27, no. 1, pp. 173–183, Mar. 2012.
[27] R. A. Mastromauro, M. Liserre, and A. Dell’Aquila, “Control Issues in Single-Stage Photovoltaic Systems: MPPT, Current and Voltage Control,” IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp. 241–254, Feb. 2012.
[28] E. V. Paraskevadaki and S. A. Papathanassiou, “Evaluation of MPP Voltage and Power of Mc-Si PV Modules in Partial Shading Conditions,” IEEE Transactions on Energy Conversion, vol. 26, no. 3, pp. 923–932, Sep. 2011.
[29] H. Patel and V. Agarwal, “MATLAB-Based Modeling to Study the Effects of Partial Shading on PV Array Characteristics,” IEEE Transactions on Energy Conversion, vol. 23, no. 1, pp. 302–310, Mar. 2008.
[30] F. Spertino and J. S. Akilimali, “Are Manufacturing I-V Mismatch and Reverse Currents Key Factors in Large Photovoltaic Arrays ? ” IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4520–4531, June 2009.
[31] M. C. A. Garc´ıa, W. Herrmann, W. B¨ohmer, and B. Proisy, “Thermal and Electrical Effects Caused by Outdoor Hot-Spot Testing in Associations of Photovoltaic Cells,” Progress in Photovoltaics : Research and Applications, vol. 11, no. 5, pp. 293–307, July 2003.
[32] W. Herrmann, W. Wiesner, and W. Vaassen, “Hot Spot Investigations on PV Modules—New Concepts for a Test Standard and Consequences for Module Design with Respect to Bypass Diodes,” in IEEE Photovoltaic Specialists Conference, pp. 1129–1132, Sep. 1997.
[33] A. Karavadi, “Power Electronics Design Implications of Novel Photovoltaic Collector Geometries and Their Application for Increased Energy Harvest,” Thesis, Dept. Electr. Comput. Eng., Texas A&M Univ., Aug. 2011.
[34] T. Halder, “Comprehensive Power Loss Model of the Main Switch of the Flyback Converter,” in IEEE International Conference on Power, Energy and Control, pp. 792-797, June. 2013.
[35] E. C. Snelling, Soft Ferrites, Properties and Applications, Butterworths, second edition, 1988.
[36] K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, “Accurate Prediction of Ferrite Core Loss with Nonsinusoidal Waveforms Using Only Steinmetz,” in Proceedings IEEE Workshop on Computers in Power Electronics, pp. 36–41, 2002.
[37] J. Reinert, A. Brockmeyer, and R. W. A. A. De Doncker, “Calculation of Losses in Ferro- and Ferrimagnetic Materials Based on the Modified Steinmetz Equation,” IEEE Transactions on Industry Applications, vol. 37, no. 4, pp. 1055-1061, Aug. 2001.
[38] J. Li, T. Abdallah, C. R. Sullivan, “Improved calculation of core loss with nonsinusoidal waveforms,” in IEEE Industry Applications Conference, vol. 4, pp. 2203-2210, Sep. 2001.
[39] T. Shimizu, and S. Iyasu, “A Practical Iron Loss Calculation for AC Filter Inductors Used in PWM Inverters,” IEEE Transactions on Industrial Electronics, vol. 56, no. 7, pp. 2600-2609, July. 2009.
[40] L. Huang, Z. Zhang, and M. A. E. Andersen, “Analytical Switching Cycle Modeling of Bidirectional High-Voltage Flyback Converter for Capacitive Load Considering Core Loss Effect,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 470-487, Jan. 2016.
[41] J. M¨uhlethaler, J. Biela, J. W. Kolar, and A. Ecklebe, “Core Losses Under the DC Bias Condition Based on Steinmetz Parameter,” IEEE Transactions on Power Electronics, vol. 27, no. 2, pp. 953-963, Feb. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code