Responsive image
博碩士論文 etd-0004118-115150 詳細資訊
Title page for etd-0004118-115150
論文名稱
Title
利用新型數位訊號處理技術實現高性能且具高靈活性之延時分複用正交分頻多工被動式光纖網路
High-performance and flexible Delay Division Multiplexing OFDM-PONs enabled by Novel Digital Signal Processing Technologies
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-12-28
繳交日期
Date of Submission
2018-01-04
關鍵字
Keywords
訊號調變、正交頻分多址、被動式光纖網路、正交分頻多工、延時分複用、數位訊號處理
Digital Signal Process (DSP), Signal Modulation, Orthogonal Frequency Division Multiple Access (OFDMA), Passive Optical Networks (PON), Delay Division Multiplexing (DDM), Orthogonal Frequency Division Multiplexing (OFDM)
統計
Statistics
本論文已被瀏覽 5686 次,被下載 5
The thesis/dissertation has been browsed 5686 times, has been downloaded 5 times.
中文摘要
隨著現代網際網路發達,智慧型裝置的運用與開發也有著蓬勃的發展,而這也暗示著人們對於寬頻資料傳輸的極大需求,因此如何以簡單、快速並且符合經濟效益的方式處理訊號成了現代通訊技術發展的重要課題。
無論是在傳統同軸電纜或是大氣中高頻訊號都會受到相當大的傳輸損耗,導致傳輸容量與距離受到限制。因此將正交分頻多工技術(OFDM)應用於被動式光纖網路(PON)上被視為是極具潛力的選項之一,此方法可以提供足夠的頻寬並且解決傳輸損耗的問題。不過標準的OFDM-PON系統存在著一個不利於成本控制的缺點:需要接收冗餘的訊號,也就是說標準的OFDM-PON系統需要昂貴的高速轉換器才能解調訊號。在先前的研究中已提出了延時分複用正交分頻多工被動式光纖網路(DDM OFDM-PON)技術克服了以上的缺點。然而,由於DDM OFDM-PON技術尚未開發出可動態分配虛擬群組之資料容量,因此對於現行網路架構之可適性不佳,且尚無可用於此系統中的訊號品質改善技術。
本論文以固定取樣率之DDM OFDM-PON為基礎提出了可以容納不同取樣率的虛擬群組,同時提出了可用於DDM技術的預加重(pre-emphasis)和位元負載(Bit-loading)技術以提升訊號品質,並且開發出適用於次奈奎斯特取樣(sub-Nyquist sampling)的通道響應評估技術使得本系統之性能大幅提升。
Abstract
Due to development of modern Internet, the applications of smart devices also have a thriving development, implying a great demand for broadband data transmission. Therefore, how to process signals in a simple, fast and cost-effective manner is the focus of modern communications.
High-frequency signals in either the traditional coaxial cable or the atmosphere are subject to considerable transmission loss, resulting in limited transmission capacity and distance. Therefore, the application of Orthogonal Frequency Division Multiplexing (OFDM) technology to Passive Optical Network (PON) is considered as one of the most promising candidate to provide enough bandwidth and solve the problem of transmission loss. However, the standard OFDM-PON system suffers from the disadvantage of being cost-prohibitive because it needs to receive redundant signals. Thus, a standard OFDM-PON system needs an expensive high-speed converter to demodulate signals. In previous works, Delay Division (DDM) Multiplexing OFDM-PON technology has been proposed to overcome the above shortcomings. However, the DDM OFDM-PON technology can only assign the same data capacity to all virtual groups, limiting the flexibility and adaptability to the current network architectures. Besides, there is no available technology to improve the performance of this system.
This thesis proposes a new method that can accommodate virtual groups with different sampling rates and capacities, thereby increasing the flexibility. In addition, this work proposes novel techniques to improve the performance of the DDM system, including pre-emphasis, bit-loading, and channel response estimation. The channel estimation technique is particularly central in an APD-based DDM system.
目次 Table of Contents
Acknowledgements i
摘要 iii
Abstract iv
Content vi
List of Figure ix
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
Chapter 2 Delay-Division-Multiplexing Orthogonal Frequency Division Multiplexing Te-chnology 6
2.1 Preface 6
2.2 OFDM-PON 7
2.2.1 Why PON 7
2.2.2 Orthogonal Frequency-division Multiplexing 8
2.2.4 The characteristics of OFDMA-PON 13
2.3 Delay Division Multiplexing OFDM-PON 14
2.3.1 Sub-Nyquist sampling 14
2.3.2 Relationship between time domain and frequency domain 17
2.3.3 Concept of DDM OFDM-PON 18
2.3.4 Mathematical description of the pre-processing 21
2.3.4.1 Transmission channel analysis 21
2.3.4.2 Pre-processing and sampling instant 25
2.3.5 The advantage of DDM OFDM-PON 30
2.4 Objective and problem statement 31
Chapter 3 DDM OFDM-PON for Hybrid Sampling Rate of ONUs and Quality Opti-mization 32
3.1 Preface 32
3.2 DDM OFDM-PON for hybrid sampling rate of ONUs 33
3.2.1 Introduction of hybrid-sampling-rate DDM OFDM-PON 33
3.2.2 Pre-processing 35
3.2.3 Arrangement for sampling delays 38
3.2.4 Additional consideration in IM/DD systems 40
3.3 Estimate channel response with Sub-Nyquist sampling 43
3.3.1 Localized method 43
3.3.2 Interleaved method 45
3.3.3 Whole-band method 48
3.4 Improving quality of received signal in DDM OFDM-PON scheme 53
3.4.1 Pre-emphasis 53
3.4.2 Bit-loading 57
Chapter 4 Experiment Demonstration of the Proposed EML System 59
4.1 Preface 59
4.2 Experimental setup for PON system 59
4.3 Experimental results of the PON system 61
4.3.1 SNR/BER results with fixed sampling rate of ONUs 61
4.3.2 SNR/BER results with different fiber length versus receiver type 62
4.3.3 SNR/BER results with hybrid sampling rate of ONUs 64
4.3.4 SNR/BER results with each channel estimation method 67
Chapter 5 Conclusion 75
Reference 77
參考文獻 References
[1]“Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021,” Cisco White Paper, 2017.
[2] T. Koonen, “Fiber to the Home/Fiber to the Premises: What, Where, and When?” Proceedings of the IEEE, Volume: 94, Issue: 5, p. 911 – 934, May 2006.
[3] C. C. Wei, H. C. Liu, C. T. Lin, “Novel Delay-Division-Multiplexing OFDMA Passive Optical Networks Enabling Low-Sampling-Rate ADC,” Optical Fiber Communication Conference, Los Angeles, California United States, paper M3J.1, 2015.
[4] C. C. Wei, H. C. Liu, C. T. Lin, “Analog-to-Digital Conversion Using Sub-Nyquist Sampling Rate in Flexible Delay-Division Multiplexing OFDMA PONs,” Journal of Lightwave Technology, Volume: 34, Issue: 10, p. 2381 – 2390, May15, 15 2016.
[5] J. H. Hsu, M. Yu, C. C. Wei, … “Novel DDM-OFDM-PON with Hybrid Sub-Nyquist Sampling Rates Featuring Heterogeneous ONUs with Different Capacities” propose in Optical Fiber Communication Conference, San Diego United States, 2018.
[6] P. P. Iannone and K. C. Reichmann, “Optical access beyond 10 Gb/s PON”, in European Conference and Exhibition on Optical Communication (ECOC), paper Tu.3. B.1, 2010.
[7] K. Grobe and J.-P Elbers, “PON in Adolescence: From TDMA to WDM-PON,” IEEE Commun. Mag., vol. 46, p. 26 – 34, Jan. 2008.
[8] R. P. Leon, “Brief prsentation of telecom fundamentals for non technical people”, website https://www.slideshare.net/, Engineering, 2014.
[9] J. Armstrong, “OFDM for optical communications,” Journal of Lightwave Technology, Volume: 27, Issue: 3, p. 189 – 204, Feb.1, 2009.
[10] N. Cvijetic, D. Qian, and J. Hu, “100 Gb/s optical access based on optical orthogonal frequency-division multiplexing,” IEEE Communications Magazine, Volume: 48, Issue: 7, p. 70 – 77, Jul. 2010.
[11] The IEEE 802.16 Working Group on Broadband Wireless Access Standards, http://www.ieee802.org/16/
[12] J. Kani, F. Bourgart, A. Cui, A. Rafel, M. Campbell, R. Davey, and S. Rodrigues, “Next-generation PON-Part I: Technology roadmap and general requirements,” IEEE Communications Magazine, Volume: 47, Issue: 11, p. 43 – 49, Nov. 2009.
[13] K. Grobe and J. P. Elbers, “PON in adolescence: From TDMA to WDM-PON,” IEEE Communications Magazine, Volume: 46, Issue: 1, p. 26 – 34, Jan. 2008.
[14] F. T. An, K. S. Kim, D. Gutierrez, S. Yam, E. Hu, K. Shrikhande, and L. G. Kazovsky, “SUCCESS: A nextgeneration hybrid WDM/TDM optical access network architecture,” Journal of Lightwave Technology, Volume: 22, Issue: 11, p. 2557 – 2569, Nov. 2004.
[15] A. V. Oppenheim, A. S. Willsky, S. H. Nawab “Signals & systems (2nd ed.),” Prentice-Hall, Inc. Upper Saddle River, NJ, USA ,1996
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code