Responsive image
博碩士論文 etd-0007114-105359 詳細資訊
Title page for etd-0007114-105359
論文名稱
Title
親水性對核磁共振順磁造影劑溶液中高分子擁擠效應的影響
The effect of hydrophilicity on macromolecular crowding in paramagnetic solution of magnetic resonance imaging contrast agent
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-12-19
繳交日期
Date of Submission
2014-01-07
關鍵字
Keywords
大分子、擁擠、親水性
macromolecular, crowding, hydrophilicity
統計
Statistics
本論文已被瀏覽 5679 次,被下載 553
The thesis/dissertation has been browsed 5679 times, has been downloaded 553 times.
中文摘要
核磁共振造影(magnetic resonance imaging, MRI)是最靈活的非侵入性影像方法,已經在材料、化學、生物以及醫學、語言學和心理領域獲得廣泛的應用。為了進一步提高解析度和選擇性,最近幾十年又開發出了2000多種造影劑。MRI造影劑中的順磁性離子與水之間的偶極作用力,造成與它接近的水之NMR訊號鬆弛速率改變,進而改變該處的影像對比度。MRI造影劑所處的環境是典型的擁擠環境,雖然研究擁擠效應的文獻甚多,但是到目前為止,沒有有關擁擠效應對MRI造影劑影響的報導。我們採用高分子模擬擁擠環境對這一效應進行研究。我們發現,擁擠高分子對造影劑分子的影響因素中,高分子的親水性對擁擠效應有重要影響,對擁擠效應的體積排除之簡單圖像必須更新。因此,本工作對這一因素做一探討。
本工作主要利用sodium polyacrylate (NaPA), bovine serum albumin (BSA), polyethylene glycol (PEG)等不同親水度的高分子(人工合成或生物大分子)及其混合溶液當作擁擠劑(crowder),而Dotarem為本實驗的MRI順磁造影劑。改變高分子及順磁離子溶液的濃度,利用1H NMR的T1,T2,化學位移以及T1,T2,擴散加權影像來對擁擠效應進行表徵。我們初步發現,這些分子表現不同的擁擠效應,親水性對NMR鬆弛,化學位移以及影像對比度都有明顯的影響。我們將報告各種不同條件下的親水性對擁擠效應的定量結果,並結合理論計算和模擬對這些現象提出解釋。相信有關結果對進一步理解MRI造影劑的機理以及研發新一代MRI造影劑有啟發。
Abstract
The power of MRI is tremendously enhanced by the application of various types of MRI contrast agents which increase the relaxivity of water molecules close to them through strong dipolar interactions between water and the paramagnetic ions on the contrast agent. With about 30 years of advancement, MRI contrast agents with various functions, such as signal enhancement, target selection and molecular or event specificity, have been developed. More MRI contrast agents with different purposes are under development today. To better understand the mechanism of MRI contrast agents in various conditions and to develop new generation MRI contrast agents, it is desired that the interactions between the MRI contrast agents and other molecules in their proximity are better understood. We have found that macromolecular crowding effect is an important contributing factor that affects the performance of MRI contrast agents. Therefore, we have decided to carry out a full investigation of this phenomenon with different crowding molecules and MRI contrast agents. This work will report the results with sodium polyacrylate (NaPA) as crowder and Dotarem as MRI contrast agent and focus on the hydrophiliity of macromolecules. A linear relationship is found between the concentration of Dotarem and relaxation rates and chemical shift. A nonlinear relationship is found between the concentration of NaPA and relaxation rates and chemical shift. The hydrophilicity of macromolecular crowders has significant influence on overall crowding effect. The simple picture of volume exclusion must be updated and intermolecular interactions must be taken into account. Morevoer, the details of the crowding effect of NaPA and that of PEG are compared and discussed.
目次 Table of Contents
第一章 緒論 - 1 -
1.1 前言 - 1 -
1.2 研究動機 - 3 -
第二章 順磁試劑介紹 - 4 -
2.1核磁共振與造影劑 - 4 -
2.2 商用造影劑 - 4 -
2.2.1 Dotarem (得立顯注射劑) - 5 -
2.2.2 Magnevist (美格維斯注射劑) - 6 -
2.3 順磁分子鬆弛理論15,16 - 6 -
2.3.1 內層質子鬆弛機制 17,18 - 8 -
2.3.2 外層質子鬆弛機制 - 11 -
2.3.3 水分子間的交換機制 - 12 -
第三章 擁擠與侷限效應 - 14 -
3.1擁擠與侷限效應介紹11 - 14 -
3.2熱力學觀點解釋擁擠和侷限 - 14 -
3.3 擁擠∆F_X^crowd與侷限∆F_X^confine估計值 - 18 -
3.4擁擠與侷限締合平衡態 - 19 -
3.5擁擠與侷限位點鍵結平衡態 - 20 -
3.6擁擠與侷限中蛋白質上的兩態折疊平衡 - 21 -
3.7利用變場鬆弛實驗測量孔洞中分子 - 21 -
3.8親水性質 - 22 -
3.8.1疏水交互作用 - 22 -
3.8.2小孔洞與大孔洞的水合化 - 23 -
第四章 實驗部分 - 25 -
4.1 實驗藥品 - 25 -
4.1.1 NaPA ( Polyacrylic acid, sodium salt) - 25 -
4.1.2 PEG (Polyethylene glycol) - 25 -
4.1.3 Dotarem - 26 -
4.2 樣品製備 - 27 -
4.2.1 擁擠試劑製備 - 27 -
4.2.2 Dotarem製備 - 27 -
4.2.3 溶劑製備 - 27 -
4.3儀器實驗配製 - 28 -
4.3.1 鬆弛實驗 - 28 -
4.3.2 擴散實驗 - 28 -
4.3.3 影像實驗 - 29 -
4.3.4 黏度實驗 - 29 -
4.3.5 酸鹼值實驗 - 30 -
4.4儀器設備 - 30 -
4.5儀器條件 - 32 -
第五章 結果與討論 - 34 -
5.1不同濃度高分子水溶液1H 一維光譜和酸鹼值測量 - 34 -
5.2不同濃度高分子水溶液R1測量 - 42 -
5.3不同濃度高分子水溶液R2測量 - 50 -
5.4鬆弛與化學位移 - 56 -
5.5微影像實驗 - 58 -
5.6高分子水溶液擴散係數和黏度測量 - 61 -
第六章 結論 - 64 -
參考資料 - 65 -
附錄 - 69 -
參考文獻 References
(1) Minton, A. P.; Wilf, J. Effect of Macromolecular Crowding Upon the Structure and Function of an Enzyme - Glyceraldehyde-3-Phosphate Dehydrogenase. Biochemistry-Us 1981, 20, 4821-4826.
(2) Fulton, A. B. How Crowded Is the Cytoplasm. Cell 1982, 30, 345-347.
(3) Minton, A. P. The Effect of Volume Occupancy Upon the Thermodynamic Activity of Proteins - Some Biochemical Consequences. Mol Cell Biochem 1983, 55, 119-140.
(4) Hall, D.; Minton, A. P. Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Bba-Proteins Proteom 2003, 1649, 127-139.
(5) Zhou, H. X. Loops, linkages, rings, catenanes, cages, and crowders: Entropy-based strategies for stabilizing proteins. Accounts Chem Res 2004, 37, 123-130.
(6) Zhou, H. X. Polymer models of protein stability, folding, and interactions. Biochemistry-Us 2004, 43, 2141-2154.
(7) Zhou, H. X. Protein folding in confined and crowded environments. Arch Biochem Biophys 2008, 469, 76-82.
(8) Munishkina, L. A.; Cooper, E. M.; Uversky, V. N.; Fink, A. L. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation. J Mol Recognit 2004, 17, 456-464.
(9) Derham, B. K.; Harding, J. J. The effect of the presence of globular proteins and elongated polymers on enzyme activity. Bba-Proteins Proteom 2006, 1764, 1000-1006.
(10) Cheung, M. S.; Klimov, D.; Thirumalai, D. Molecular crowding enhances native state stability and refolding rates of globular proteins. P Natl Acad Sci USA 2005, 102, 4753-4758.
(11) Zhou, H. X.; Rivas, G. N.; Minton, A. P. Macromolecular crowding and confinement: Biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 2008, 37, 375-397.
(12) Wang, Y. Q.; Li, C. G.; Pielak, G. J. Effects of Proteins on Protein Diffusion. J Am Chem Soc 2010, 132, 9392-9397.
(13) Li, C. G.; Charlton, L. M.; Lakkavaram, A.; Seagle, C.; Wang, G. F.; Young, G. B.; Macdonald, J. M.; Pielak, G. J. Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: Implications for in-cell NMR spectroscopy. J Am Chem Soc 2008, 130, 6310-+.
(14) Runge, V. M.; Clanton, J. A.; Herzer, W. A.; Gibbs, S. J.; Price, A. C.; Partain, C. L.; James, A. E. Intravascular Contrast Agents Suitable for Magnetic-Resonance Imaging. Radiology 1984, 153, 171-176.
(15) Lauffer, R. B. Paramagnetic Metal-Complexes as Water Proton Relaxation Agents for Nmr Imaging - Theory and Design. Chem Rev 1987, 87, 901-927.
(16) Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem Rev 1999, 99, 2293-2352.
(17) Swift, T. J.; Connick, R. E. Nmr-Relaxation Mechanisms of 017 in Aqueous Solutions of Paramagnetic Cations and Lifetime of Water Molecules in First Coordination Sphere. J Chem Phys 1962, 37, 307-&.
(18) Luz, Z.; Meiboom, S. Proton Relaxation in Dilute Solutions of Cobalt(2) + Nickel)2) Ions in Methanol + Rate of Methanol Exchange of Solvation Sphere. J Chem Phys 1964, 40, 2686-&.
(19) Freed, J. H. Dynamic Effects of Pair Correlation-Functions on Spin Relaxation by Translational Diffusion in Liquids .2. Finite Jumps and Independent T1 Processes. J Chem Phys 1978, 68, 4034-4037.
(20) Micskei, K.; Helm, L.; Brucher, E.; Merbach, A. E. O-17 Nmr-Study of Water Exchange on [Gd(Dtpa)(H2o)]2- and [Gd(Dota)(H2o)]- Related to Nmr Imaging. Inorg Chem 1993, 32, 3844-3850.
(21) Aime, S.; Barge, A.; Botta, M.; Parker, D.; DeSousa, A. S. Prototropic vs whole water exchange contributions to the solvent relaxation enhancement in the aqueous solution of a cationic Gd3+ macrocyclic complex. J Am Chem Soc 1997, 119, 4767-4768.
(22) Minton, A. P. How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 2006, 119, 2863-2869.
(23) Aisenbrey, C.; Bechinger, B.; Grobner, G. Macromolecular crowding at membrane interfaces: adsorption and alignment of membrane peptides. J Mol Biol 2008, 375, 376-385.
(24) Hermans, J.; Acampora, G. Reversible Denaturation of Spermwhale Myoglobin. Fed Proc 1966, 25, 412-&.
(25) Minton, A. P. The effective hard particle model provides a simple, robust, and broadly applicable description of nonideal Behavior in concentrated solutions of bovine serum albumin and other nonassociating proteins. J Pharm Sci 2007, 96, 3466-3469.
(26) Lebowitz, J. L.; Helfand, E.; Praestga.E. Scaled Particle Theory of Fluid Mixtures. J Chem Phys 1965, 43, 774-&.
(27) Reiss, H.; Frisch, H. L.; Lebowitz, J. L. Statistical Mechanics of Rigid Spheres. J Chem Phys 1959, 31, 369-380.
(28) Rivas, G.; Fernandez, J. A.; Minton, A. P. Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: Indefinite linear self-association of bacterial cell division protein FtsZ. P Natl Acad Sci USA 2001, 98, 3150-3155.
(29) Cotter, M. A. Hard Sphero-Cylinders in an Anisotropic Mean Field - Simple-Model for a Nematic Liquid-Crystal. J Chem Phys 1977, 66, 1098-1106.
(30) Giddings, J. C.; Kucera, E.; Russell, C. P.; Myers, M. N. Statistical Theory for Equilibrium Distribution of Rigid Molecules in Inert Porous Networks . Exclusion Chromatography. J Phys Chem-Us 1968, 72, 4397-&.
(31) Minton, A. P. Confinement as a Determinant of Macromolecular Structure and Reactivity. Biophys J 1992, 63, 1090-1100.
(32) Minton, A. P. Excluded Volume as a Determinant of Macromolecular Structure and Reactivity. Abstr Pap Am Chem S 1981, 182, 32-&.
(33) Alberts, B. The cell as a collection of protein machines: Preparing the next generation of molecular biologists. Cell 1998, 92, 291-294.
(34) Zhou, H. X.; Dill, K. A. Stabilization of proteins in confined spaces. Biochemistry-Us 2001, 40, 11289-11293.
(35) Dorazio, F.; Bhattacharja, S.; Halperin, W. P.; Eguchi, K.; Mizusaki, T. Molecular-Diffusion and Nmr Relaxation of Water in Unsaturated Porous Silica Glass. Phys Rev B 1990, 42, 9810-9818.
(36) Korb, J. P.; Delville, A.; Xu, S.; Demeulenaere, G.; Costa, P.; Jonas, J. Relative Role of Surface Interactions and Topological Effects in Nuclear-Magnetic-Resonance of Confined Liquids. J Chem Phys 1994, 101, 7074-7081.
(37) Redfield, A. G.; Fite, W.; Bleich, H. E. Precision High Speed Current Regulators for Occasionally Switched Inductive Loads. Rev Sci Instrum 1968, 39, 710-&.
(38) Whaley, M.; Lawence, A. J.; Korb, J. P.; Bryant, R. G. Magnetic cross-relaxation and chemical exchange between microporous solid and mobile liquid phases. Solid State Nucl Mag 1996, 7, 247-252.
(39) Stapf, S.; Kimmich, R.; Seitter, R. O. Proton and Deuteron Field-Cycling Nmr Relaxometry of Liquids in Porous Glasses - Evidence for Levy-Walk Statistics. Phys Rev Lett 1995, 75, 2855-2858.
(40) Korb, J. P.; Xu, S.; Jonas, J. Confinement Effects on Dipolar Relaxation by Translational Dynamics of Liquids in Porous Silica Glasses. J Chem Phys 1993, 98, 2411-2422.
(41) Korb, J. P.; Delville, A.; Xu, S.; Jonas, J. Nuclear-Relaxation of Liquids in Porous-Media. J Chim Phys Pcb 1994, 91, 848-861.
(42) Kauzmann, W. Some Factors in the Interpretation of Protein Denaturation. Adv Protein Chem 1959, 14, 1-63.
(43) Reynolds, J.; Tanford, C. Boltzmann's atom: The great debate that launched a revolution in physics. Nature 2001, 409, 18-18.
(44) Tanford, C. How protein chemists learned about the hydrophobic factor. Protein Sci 1997, 6, 1358-1366.
(45) Dixit, S.; Crain, J.; Poon, W. C. K.; Finney, J. L.; Soper, A. K. Molecular segregation observed in a concentrated alcohol-water solution. Nature 2002, 416, 829-832.
(46) Swope, W. C.; Andersen, H. C. A Molecular-Dynamics Method for Calculating the Solubility of Gases in Liquids and the Hydrophobic Hydration of Inert-Gas Atoms in Aqueous-Solution. J Phys Chem-Us 1984, 88, 6548-6556.
(47) Pratt, L. R.; Chandler, D. Theory of Hydrophobic Effect. J Chem Phys 1977, 67, 3683-3704.
(48) Sharp, K. A.; Nicholls, A.; Fine, R. F.; Honig, B. Reconciling the Magnitude of the Microscopic and Macroscopic Hydrophobic Effects. Science 1991, 252, 106-109.
(49) Ashbaugh, H. S.; Kaler, E. W.; Paulaitis, M. E. A "universal" surface area correlation for molecular hydrophobic phenomena. J Am Chem Soc 1999, 121, 9243-9244.
(50) Stillinger, F. H. Structure in Aqueous Solutions of Nonpolar Solutes from the Standpoint of Scaled-Particle Theory. J Solution Chem 1973, 2, 141-158.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code