Responsive image
博碩士論文 etd-0007115-173044 詳細資訊
Title page for etd-0007115-173044
論文名稱
Title
金奈米粒子組裝於固態基材與其SERS之應用
Fabrication of gold nanoparticle on solid support and its application in SERS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-19
繳交日期
Date of Submission
2015-02-25
關鍵字
Keywords
表面增強拉曼散射、拉曼散射、自組裝單分子膜、金奈米粒子
SERS, Raman spectroscopy, gold nanoparticle, Self-assembled monolayer
統計
Statistics
本論文已被瀏覽 5661 次,被下載 0
The thesis/dissertation has been browsed 5661 times, has been downloaded 0 times.
中文摘要
表面增強拉曼散射( SERS )是一個非常重要的分析技術,且廣泛應用在化學、生物及環境的領域上。而如何製備出一個高增強效應、再現性佳及高穩定度的SERS基材是相當熱門的。本篇透過自組裝的方法來製備SERS活性基材,我們利用APS、APTES以及Poly-L-Lysine來進行分子自組裝修飾,FT-IR及XPS鑑定薄膜的形成,AFM觀察表面形貌並測量表面粗糙度,發現APTES易產生聚集現象,使表面粗糙度大增,而APS及Poly-L-Lysine則形成平滑無聚集的薄膜。藉由薄膜上的胺基( -NH2 )與金奈米粒子間的高親和力,將金奈米粒子固定於固態基板上,並用AFM觀察表面奈米結構。而在SERS實驗部分,使用4-MBA為探測分子,偵測極限可達到10-6 M。此外,所製備之SERS活性基板也有很好的再現性及穩定度。過去二十年來,利用金奈米粒子進行的非勻相催化反應引起科學家廣大的興趣。因此,我們將所製備之SERS活性基材,應用於監控金奈米粒子所催化之化學反應,以4-NTP還原為4-ATP的反應作為研究對象,成功觀察到SERS光譜的形貌隨時間產生變化,藉由動力學之分析,顯示此反應為一級反應,而UV-Vis光譜之結果也證實了金奈米粒子具催化活性。
Abstract
Surface-enhanced Raman scattering ( SERS ) has become an important analytical tool, and it has broad applications in the fields of chemistry, biology and environmental science. However, how to prepare a SERS-active substrate with high enhancement, good reproducibility and stability is a big challenge. In this study, we prepared the SERS-active substrate through self-assembly method. We used APS, APTES and Poly-L-Lysine for surface modification, and the films were characterized by FT-IR and XPS. AFM was use to characterize the surface morphology and measure the surface roughness. It was found that APTES was prone to forming molecular aggregates on the surface, leading to the increase in surface roughness. In contrast, APS and Poly-L-Lysine created a smooth and aggregate-free film. Then, the gold nanoparticles could be immobilized on solid supports by its high affinity to amine groups, and the nanostructure of the surface was investigated by AFM and UV-Vis spectroscopy. In SERS measurements, 4-MBA was chosen as a probe molecule to test the performance of the substrate, and the detection limit is 10-6 M. Furthermore, the substrate showed excellent reproducibility of the gold nanostructure and good stability over time. In the past two decades, heterogeneous catalysis with gold nanoparticle has received a great deal of attention. Therefore, we employed the SERS-active substrate for monitoring the Au-catalyzed reduction of 4-NTP to 4-ATP, and it was observed successfully that the feature of the SERS spectra changed over different reaction times. Kinetic study indicates that this reaction follows first-order kinetics, and the result of UV-Vis spectroscopy also demonstrated that gold nanoparticle exhibit catalytic activity.
目次 Table of Contents
摘要 i
Abstract ii
目錄 iii
圖次 vii
表次 xi
第一章 緒論 1
1-1 拉曼散射 ( Raman Scattering ) 1
1-1-1 簡介 1
1-1-2 拉曼散射機制 2
1-1-3 拉曼散射理論 4
1-2 表面增強拉曼散射 ( Surface Enhanced Raman Scattering, SERS ) 7
1-2-1 簡介 7
1-2-2 電磁場增強效應 ( electromagnetic enhancement ) 8
1-2-3 化學增強效應 ( chemical enhancement ) 9
1-3 研究動機 12
第二章 儀器介紹 13
2-1 原子力顯微鏡 ( Atomic Force Microscopy, AFM ) 13
2-1-1 簡介 13
2-1-2 原理 14
2-1-3 工作模式 16
2-1-4 使用儀器及參數設定 18
2-2 傅立葉轉換紅外光譜儀 ( Fourier Transform Infrared Spectrometer, FT-IR ) 19
2-2-1 原理 19
2-2-2 使用儀器與參數設定 23
2-3 紫外/可見光光譜儀 ( Ultraviolet-Visible Spectrometer ) 24
2-3-1 比爾定律 ( Beer’s Law ) 24
2-3-2 紫外/可見光光譜 ( Ultraviolet-Visible Spectrometry, UV-Vis ) 25
2-3-3 使用儀器與參數設定 27
2-4 拉曼光譜儀 ( Raman Spectrometer ) 28
2-4-1 簡介 28
2-4-2 使用儀器與參數設定 28
2-5 接觸角量測儀 ( Contact Angle Meter ) 29
2-5-1 原理 29
2-5-2 使用儀器與參數設定 31
第三章 金奈米粒子組裝於固態基材上作為表面增強拉曼散射之平台 32
3-1 前言 32
3-2 文獻回顧 34
3-2-1 自組裝單分子薄膜 ( Self-assembled monolayer, SAM ) 34
3-2-2 金奈米粒子之特性與應用 37
3-3 實驗部分 38
3-3-1 實驗藥品 38
3-3-2 實驗材料 39
3-3-3 實驗流程 40
3-3-3-1 基板準備 40
3-3-3-2 SERS活性基板製備 40
3-3-3-3 FT-IR樣品製備 41
3-3-3-4 UV-Vis樣品製備 41
3-3-3-5 Contact angle樣品製備 42
3-3-3-6 XPS樣品製備 42
3-3-3-7 SERS實驗部分 42
3-3-3-8 實驗流程示意圖 42
3-4 結果與討論 44
3-4-1 自組裝單分子薄膜之表面分析與鑑定 45
3-4-1-1 AFM觀察表面形貌與表面粗糙度測量 45
3-4-1-2 FT-IR鑑定薄膜之形成 51
3-4-1-3 XPS鑑定薄膜之形成 52
3-4-1-4 Contact angle測量薄膜表面特性 54
3-4-2 金奈米結構之鑑定 56
3-4-2-1 UV-Vis光譜測量金奈米結構之光學特性 56
3-4-2-2 AFM鑑定金奈米結構 59
3-4-3 金奈米結構之SERS測試 62
3-4-3-1 偵測極限 63
3-4-3-2 靈敏度 66
3-4-3-3 再現性 68
3-4-3-4 穩定度 68
3-5 結論 70
第四章 表面增強拉曼散射應用於監控金奈米粒子催化之化學反應 71
4-1 前言 71
4-2 實驗部分 73
4-2-1 實驗藥品 73
4-2-2 實驗材料 74
4-2-3 實驗流程 74
4-3 結果與討論 75
4-3-1 SERS監控金奈米粒子催化4-NTP之還原反應 75
4-3-2 金奈米粒子具催化活性之證據 83
4-4 結論 89
第五章 結論 90
第六章 未來展望 91
參考文獻 92
參考文獻 References
1. A. Smekal, Naturwissenschaften, 1923, 11, 873-875.
2. C. V. Raman and K. S. Krishnan, Nature, 1928, 169, 501-502.
3. C. V. Raman, Indian Journal of Physics, 1928, 2, 387-398.
4. R. L. McCreery, Raman Spectroscopy for Chemical Analysis, John Wiley & Sons, Inc., 2005.
5. M. Fleischmann, P. J. Hendra and A. J. McQuillan, Chemical Physics Letters, 1974, 26, 163-166.
6. A. J. McQuillan, Notes and Records of the Royal Society, 2009, 63, 105-109.
7. D. L. Jeanmaire and R. P. V. Duyne, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1977, 84, 1-20.
8. M. G. Albrecht and J. A. Creighton, Journal of the American Chemical Society, 1977, 99, 5215-5217.
9. P. L. Stiles, J. A. Dieringer, N. C. Shah and R. P. Van Duyne, Annual Review of Analytical Chemistry, 2008, 1, 601-626.
10. A. Campion and P. Kambhampati, Chemical Society Reviews, 1998, 27, 241-250.
11. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasar and M. S. Feldi, Journal of Physics: Condensed Matter, 2002, 14, R597-R624.
12. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications, John Wiley & Sons, Inc., 2004.
13. R. White, Chromatography/Fourier Transform Infrared Spectroscopy and its Applications, CRC Press, 1989.
14. T. Young, Philosophical Transactions of the Royal Society, 1805, 95, 65-87.
15. M. Fan, G. F. Andrade and A. G. Brolo, Analytica Chimica Acta, 2011, 693, 7-25.
16. M. Fan and A. G. Brolo, Physical Chemistry Chemical Physics, 2009, 11, 7381-7389.
17. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem and K. L. Kavanagh, Nano Letters, 2004, 4, 2015-2018.
18. M. Kahl, E. Voges, S. Kostrewa, C. Viets and W. Hill, Sensors and Actuators B 1998, 51, 285-291.
19. Y. Du, L. Shi, T. He, X. Sun and Y. Mo, Applied Surface Science, 2008, 255, 1901-1905.
20. J. P. Camden, J. A. Dieringer, J. Zhao and R. P. V. Duyne, Accounts of Chemical Research, 2008, 41, 1653-1661.
21. M. Moskovits, Journal of Raman Spectroscopy, 2005, 36, 485-496.
22. E. C. L. Ru and P. G. Etchegoin, Principles of surface enhanced raman spectroscopy, Elsevier B.V., 2009.
23. R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter and M. J. Natan, Science, 1995, 267, 1629-1632.
24. F. Toderas, M. Baia, L. Baia and S. Astilean, Nanotechnology, 2007, 18, 255702.
25. N. Hajduková, M. Procházka, J. Štěpánek and M. Špírková, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 264-270.
26. L. G. Olson, Y.-S. Lo, J. Thomas P. Beebe and J. M. Harris, Analytical Chemistry, 2001, 73, 4268-4276.
27. R. G. Nuzzo and D. L. Allara, Journal of the American Chemical Society 1983, 105, 4481-4483.
28. A. Ulman, Chemical Reviews, 1996, 96, 1533-1554.
29. P. Fenter, A. Eberhardt and P. Eisenberger, Science, 1994, 266, 1216-1218.
30. J. Sagiv, Journal of the Amercan Chemical Society, 1980, 102, 92-98.
31. D. L. Allara and R. G. Nuzzo, Langmuir, 1985, 1, 45-52.
32. H. Ogawa, T. Chihara and K. Taya, Journal of the American Chemical Society, 1985, 107, 1365-1369.
33. N. E. Schlotter, M. D. Porter, T. B. Bright and D. L. Allara, Chemical Physics Letters, 1986, 132, 93-98.
34. A. E. Saunders, M. B. J. Sigman and B. A. Korgel, The Journal of Physical Chemistry B, 2004, 108, 193-199.
35. D. Prime, S. Paul and P. W. Josephs-Franks, Philos Trans A Math Phys Eng Sci, 2009, 367, 4215-4225.
36. Y. Li, H. J. Schluesener and S. Xu, Gold Bulletin, 2010, 43, 29-38.
37. G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten and H. Haick, Nature Nanotechnology, 2009, 4, 669-673.
38. J.-L. Li and M. Gu, Journal of Selected Topics in Quantum Electronics, 2010, 16, 989-996.
39. B. Duncan, C. Kim and V. M. Rotello, J Control Release, 2010, 148, 122-127.
40. D. T. Thompson, Nano Today, 2007, 2, 40-43.
41. E. McCafferty and J. P. Wightman, Surface and Interface Analysis 1998, 26, 549-564.
42. S. Hsieh, C.-W. Hsieh and W.-J. Chou, Journal of Nanoscience and Nanotechnology, 2009, 9, 2894-2901.
43. K.-W. Huang, C.-W. Hsieh, H.-C. Kan, M.-L. Hsieh, S. Hsieh, L.-K. Chau, T.-E. Cheng and W.-T. Lin, Sensors and Actuators B: Chemical, 2012, 163, 207-215.
44. J. Zheng, Z. Zhu, H. Chen and Z. Liu, Langmuir, 2000, 16, 4409-4412.
45. Y. A. Cheng, B. Zheng, P. H. Chuang and S. Hsieh, Langmuir, 2010, 26, 8256-8261.
46. D. G. Kurth and T. Bein, Langmuir, 1993, 9, 2965-2973.
47. Z.Q.Wei, C. Wang, C. F. Zhu, C. Q. Zhou, B. Xu and C. L. Bai, Surface Science, 2000, 459, 401-412.
48. M. Ben Haddada, J. Blanchard, S. Casale, J.-M. Krafft, A. Vallée, C. Méthivier and S. Boujday, Gold Bulletin, 2013, 46, 335-341.
49. N. Aissaoui, L. Bergaoui, J. Landoulsi, J. F. Lambert and S. Boujday, Langmuir, 2012, 28, 656-665.
50. K. C. Grabar, R. G. Freeman, M. B. Hommer and M. J. Natan, 1995, 67, 735-743.
51. V. Joseph, M. Gensler, S. Seifert, U. Gernert, J. P. Rabe and J. Kneipp, The Journal of Physical Chemistry C, 2012, 116, 6859-6865.
52. O. Seitz, M. M. Chehimi, E. Cabet-Deliry, S. Truong, N. Felidj, C. Perruchot, S. J. Greaves and J. F. Watts, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 218, 225-239.
53. A. Michota and J. Bukowska, Journal of Raman Spectroscopy, 2003, 34, 21-25.
54. C.-W. Hsieh, P.-Y. Lin and S. Hsieh, Journal of Nanophotonics, 2012, 6, 063501.
55. E. C. L. Ru, E. Blackie, M. Meyer and P. G. Etchegoin, The Journal of Physical Chemistry C, 2007, 111, 13794-13803.
56. B. Daglar, G. B. Demirel, T. Khudiyev, T. Dogan, O. Tobail, S. Altuntas, F. Buyukserin and M. Bayindir, Nanoscale, 2014, 6, 12710-12717.
57. J. Kim and A. A. Gewirth, The Journal of Physical Chemistry B
2006, 110, 2565-2571.
58. J. Huang, Y. Zhu, M. Lin, Q. Wang, L. Zhao, Y. Yang, K. X. Yao and Y. Han, Journal of the American Chemical Society, 2013, 135, 8552-8561.
59. R. Liu, J.-F. Liu, Z.-M. Zhang, L.-Q. Zhang, J.-F. Sun, M.-T. Sun and G.-B. Jiang, The Journal of Physical Chemistry Letters, 2014, 5, 969-975.
60. M. Haruta, T. Kobayashi, H. Sano and N. Yamada, Chemistry Letters, 1987, 16, 405-408.
61. B. N. Zope, D. D. Hibbitts, M. Neurock and R. J. Davis, Science, 2010, 330, 74-77.
62. N. Thielecke, K.-D. Vorlop and U. Prüße, Catalysis Today, 2007, 122, 266-269.
63. M. Haruta, YamadaN., T. Kobayashi and S. Iijima, Journal of Catalysis, 1989, 115, 301.
64. C. T. Campbell, Science, 2004, 306, 234-235.
65. W. Xie, B. Walkenfort and S. Schlucker, Journal of the American Chemical Society, 2013, 135, 1657-1660.
66. Q. Cui, A. Yashchenok, L. Zhang, L. Li, A. Masic, G. Wienskol, H. Mohwald and M. Bargheer, ACS Applied Materials & Interfaces, 2014, 6, 1999-2002.
67. S. Hong and X. Li, Journal of Nanomaterials, 2013, 2013, 1-9.
68. B. I. Rosario-Castro, E. R. Fachini, J. Herna´ndez, M. E. Pe´rez-Davis and C. R. Cabrera, Langmuir 2006, 22, 6102-6108.
69. Y. Fang, Y. Li, H. Xu and M. Sun, Langmuir, 2010, 26, 7737-7746.
70. L.-B. Zhao, Y.-F. Huang, X.-M. Liu, J. R. Anema, D.-Y. Wu, B. Ren and Z.-Q. Tian, Physical Chemistry Chemical Physics, 2012, 14, 12919-12929.
71. T. M. Abdel-Fattah and A. Wixtrom, ECS Journal of Solid State Science and Technology, 2014, 3, M18-M20.
72. L. Lu, G. Sun, H. Zhang, H. Wang, S. Xi, J. Hu, Z. Tian and R. Chen, Journal of Materials Chemistry, 2004, 14, 1005-1008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.14.164
論文開放下載的時間是 校外不公開

Your IP address is 52.14.14.164
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code