Responsive image
博碩士論文 etd-0008118-121125 詳細資訊
Title page for etd-0008118-121125
論文名稱
Title
鋁基金屬玻璃/奈米複材薄膜之光學性質與抗菌效果
Optical Properties and Antimicrobial Effects of Al-based Thin Film Metallic Glasses/Nanocomposites
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
172
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-12-24
繳交日期
Date of Submission
2018-01-08
關鍵字
Keywords
曝光系統、鋁、金屬玻璃薄膜、奈米複材、光學薄膜、抗菌
exposure system, aluminum, antimicrobial property, optical film, thin film metallic glasses, nanocomposite
統計
Statistics
本論文已被瀏覽 5690 次,被下載 31
The thesis/dissertation has been browsed 5690 times, has been downloaded 31 times.
中文摘要
本研究以開發鋁基金屬玻璃薄膜及奈米複材薄膜之光學性質為主軸,輔以測試其機械及抗菌性質,並加以運用於新型UV-LED曝光機上,皆有良好的性質表現。本研究所使用之鋁基金屬玻璃薄膜或奈米複材薄膜,以鋁(Al)、鎳(Ni)、釔(Y)三種金屬元素為主,以磁控共濺鍍之方式鍍在矽基板或是玻璃基板上,進行後續性質的分析。

第一部份針對不同成份比例的Al-Ni-Y薄膜進行基本特性分析,並且測試在不同製程條件下生長之薄膜特性及結構是否不同,接著根據不同製程條件以及成份比例製作出不同光反射條件之薄膜。第二部份則承襲第一部份將不同光反射條件之薄膜進行抗菌及抗黴菌之測試,抗菌測試使用之菌種包含金黃色葡萄球菌、大腸桿菌及綠膿桿菌,抗黴菌測試之菌種則使用巴西麴菌。第三部份則使用反射率良好且具有抗菌及抗黴菌特性之鋁基金屬玻璃或奈米複材薄膜應用於新開發之UV-LED曝光系統中,扮演極其重要的高反射層,除了抗菌、抗黴菌之特性外,與一般純鋁或純銀金屬薄膜相比,鋁基金屬玻璃或奈米複材薄膜具有更佳之機械與光學性質組合。
Abstract
This study is mainly focused on the optical properties of Al-based thin film metallic glasses (TFMGs) and thin film metallic glasses nanocomposite (TFMGCs). The mechanical properties and the antimicrobial activities were also examined. Finally, these films are applied as the high optical reflective films with outstanding antimicrobial and antifungal responses in the newly developed UV-LED exposure system. The elements of Al-based TFMGs and TFMGCs used in this study include aluminum (Al), nickel (Ni), and yttrium (Y). The magnetron co-sputtering is adopted to fabricate the films on silicon or glass substrate.

In this research, various Al-Ni-Y films are firstly synthesized with different compositions and under different process conditions, in order to reach the optimum process and high optical reflectivity performance. Next, the antimicrobial and antifungal responses of such films are explored and rated. In order to determine the antimicrobial activities, the P. aeruginosa, E. coli and S. aureus were selected. Finally, the films with both high reflectivity and antimicrobial/antifungal properties are applied in the novel ultraviolet UV-LED exposure system. In comparison with commercial pure Al and Ag thin film coatings for high optical reflection applications, the current Al-based TFMGs and TFMGCs are demonstrated to possess a better combination of mechanical and optical properties.
目次 Table of Contents
論文審定書 I
誌謝 II
中文摘要 IV
Abstract V
Content VII
List of Tables X
List of Figures XI
Chapter 1 Introduction 1
Chapter 2 Background and literature review 3
2.1 Introduction to aluminum (Al) 3
2.1.1 Band structure of Al 4
2.1.2 Interband transitions in metals 4
2.1.3 Optical properties 6
2.1.4 High reflective optical coatings 8
2.2 Al-based amorphous/nanocomposite alloys 9
2.2.1 Metallic glasses - an introduction 10
2.2.2 Distinction between crystals and glasses 11
2.2.3 Bulk metallic glasses and thin film metallic glasses 13
2.2.4 Empirical rules of MGs formation 15
2.2.5 Methods to synthesize amorphous alloys 16
2.2.6 Al-based amorphous alloy and Al-RE-TM alloy system 20
2.3 Vacuum deposition techniques 22
2.3.1 Sputtering techniques 23
2.3.2 Sputtering process and thin film growth 24
2.3.3 Homogeneous nucleation 26
2.3.4 Heterogeneous nucleation 27
2.3.5 Mechanisms of thin film growth 29
2.4 Properties of thin films 32
2.4.1 Mechanical properties characterized by nanoindentation 32
2.4.2 Optical properties and principles 36
2.4.3 Correlation of electric resistivity and optical reflectivity 39
2.4.4 Optical properties of thin film metallic glasses 41
2.4.5 Antimicrobial activity of thin film metallic glasses 42
Chapter 3 Experimental procedures 43
3.1 Materials design 43
3.2 Sample preparation 43
3.2.1 Pretreatment of substrate 43
3.2.2 Thin films growth 44
3.3 Properties and structure characterization 45
3.3.1 X-ray diffraction (XRD) 45
3.3.2 Scanning electron microscopy (SEM) 46
3.3.3 Wavelength dispersive spectroscopy (WDS) 46
3.3.4 Focus ion beam (FIB) 47
3.3.5 Transmission electron microscopy (TEM) 48
3.3.6 Differential scanning calorimeter (DSC) 48
3.3.7 3D alpha-step profilometer (-step) 48
3.3.8 Atomic force microscope (AFM) 49
3.3.9 n & K analyzer 49
3.3.10 Four-point probe 50
3.3.11 Nanoindentation 50
3.4 Antimicrobial and antifungal testing 51
3.4.1 Antibacterial testing 51
3.4.2 Antifungal testing 51
Chapter 4 Results and discussion 53
4.1 Characterization of thin films 54
4.2 The optical and electrical properties of thin films under different processing routes 59
4.2.1 Film thickness 59
4.2.2 Working pressure 61
4.2.3 Structure and composition effect 62
4.2.4 Annealing effect 66
4.3 Manufacturing of LED exposure system by applying TFMGCs 68
4.3.1 Lens of controllable optical field with TFMGCs for UV-LEDs 69
4.3.2 Design freeform lens with TFMGCs for UV-LED lithography system 71
4.4 Antimicrobial and antifungal activities 73
4.4.1 Antibacterial testing 73
4.4.2 Antifungal testing 75
4.4.3 Antibacterial and antifungal mechanisms 76
Chapter 5 Conclusions and future prospect 77
References 81
Tables 91
Figures 101
List of publications and honors 156
參考文獻 References
[1] T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, and T. G. Nieh, Appl. Phys. Lett., 101 (2012) 011902.
[2] T. T. Hu, Master thesis, Optical and Mechanical Properties of Thin Film Metallic Glasses, National Sun Yet-Sen University, Taiwan, (2012).
[3] N. Silvestre, International Journal of Composite Materials, 3 (2013) pp. 28-44.
[4] B. Segall, Physical Review, 124 (1961) pp. 1797-1806.
[5] Mark Fox, Optical Properties of Solids, Oxford University Press, (2001).
[6] H. E. Bennett, and M. Silver, E. J. Ashley, J. Opt. Soc. Am., 53 (1963) pp. 1089-1095.
[7] G. Hass, Journal of the Optical Society of America, 45 (1955) pp. 945-952.
[8] R. T. Poole, Physics Education, 18 (1983) pp. 280-283.
[9] M. Yang, A. Gatto, and N. Kaiser, J. Opt. A: Pure Appl. Opt., 8 (2006) pp. 327-332.
[10] M. -L. T. Guo1, C. Y. A. Tsao, K. F. Chang, J. C. Huang, and J. S. C. Jang, Mater Trans.
JIM., 48 (2007) pp. 1717-1721.
[11] K. Hono, Y. Zhang, A. P. Tsai, A. Inoue, and T. Sakurai, Scripta Mater., 32 (1995)
pp. 191-196.
[12] G. J. Shiflet, Y. He and and S. J. Poon, J. Appl. Phys., 64 (1988) pp. 6863-6865.
[13] L. C. Chen and F. Spaepen, Letter to Nature, 336 (1988) pp. 366-368.
[14] A. Inoue, T. Zhang, and T. Masumoto, Mater Trans. JIM., 30 (1989) pp. 965-972.
[15] A. L. Greer, Science, 267 (1994) pp.1947-1953.
[16] K. Lu, Mater. Sci. Eng. R., 16 (1996) pp. 161-221.
[17] A. Inoue, Prog. Mater. Sci., 43 (1998) pp. 365-520.
[18] J. H. Perepezko, R. J. Hebert and W. S. Tong, Intermetallics, 10 (2002) pp. 1079-1088.
[19] R. W. Cahn, Nature, 341 (1989) pp. 183-184.
[20] Y. He, S. J. Poon, and G. J. Shiflet, Science, 241 (1988) pp. 1640-1642.
[21] P. Duwez, Trans. Am. Soc. Metals, 60 (1967) pp. 607-633.
[22] T. R. Anantharaman, Metallic Glasses: Production, Properties, and Applications, Trans Tech Publications, (1984).
[23] H. H. Liebermann, Rapidly Solidified Alloys: Processes, Structures, Properties, Applications, Marcel Dekker, (1993).
[24] W. Klement, R. H. Willens, and P. Duwez, Nature, 187 (1960) pp. 869-870.
[25] C. Suryanarayana and A. Inoue, Bulk Metallic Glasses, Taylor and Francis Group, (2011).
[26] H. –J. Güntherodt, H. Beck and P. Duwez, Topics in Applied Physics: Glassy Metals I, Springer- Verlag Berlin Heidelberg, (1981).
[27] D. Mckie and C. Mckie, Essentials of Crystallograph, Blackwell Scientific Publications, (1986).
[28] S. M. Allen and E. L. Thomas, The Structure of Materials, John Wiley and Sons, (1999).
[29] A. Kelly, G. W. Groves, and P. Kidd, Crystallography and Crystal Defects, Wiley, (2000).
[30] M. D. Graef and M. E. McHenry, Structure of Materials: An introduction to Crystallography, Diffraction and Symmetry, Cambridge University Press, (2007).
[31] W. F. Smith and J. Hashemi, Foundations of Materials Science and Engineering, Mc Graw Hill, (2006).
[32] W. D. Callister and D. G. Rethwisch, Materials Science and Engineering, Wiley, (2011).
[33] A. Inoue, B. Shen, H. Koshiba and A. R. Yavari, Nature Mater., 2 (2003) pp. 661-663.
[34] N. H. Pryds, Mater. Sci. Eng. A, 375-377 (2004) pp.186-193.
[35] W. H. Wang, C. Dong, and C. H. Shek, Mater. Sci. Eng. R, 44 (2004) pp. 45-89
[36] N. Nishiyama and A. Inoue, Appl. Phys. Lett., 80 (2002) pp.568-570
[37] A. Inoue, N. Nishiyama, and H. M. Kimura, Mater Trans. JIM., 38 (1997) pp. 179-183
[38] I. –R. Lu, G. Wilde, G. P. Grler, and R. Willnecker, J. Non-Cryst. Solids, 250-252 (1999) pp. 577-581
[39] J. C. Huang, J. P. Chu, and J. S. C. Jang, Intermetallics, 17 (2009) pp. 973-987.
[40] A. Inoue, Acta Mater., 48 (2000) pp. 279-306
[41] P. Sharma, W. Zhang, K. Amiya, H. Kimura, and A. Inoue, J. Nanosci. Nanotechnol., 5 (2005) pp. 416-420.
[42] A. Inoue, Sci. Rep. Res. Inst., A42 (1996) pp. 1-11.
[43] A. Inoue, Proc. Jpn. Acad, B73 (1997) pp.19-24.
[44] A. Inoue, Bulk Amorphous Alloys: Preparation and Fundamental Characteristics. Vol 4 of Materials Science Foundations, Trans Tech Publications, (1998).
[45] R. W. Cahn, P. Haasen, and E. J. Kramer, Glass and Amorphous Materials. Vol. 9 Materials Science and Technology: A Comprehensive Treatment, John Wiley and Sons, (1991).
[46] W. L. Johnson, Prog. Mater. Sci.,30 (1986) pp. 81-134.
[47] J. Kramer, Ann. Phys., 19 (1934) pp.37.
[48] J. Kramer, Z. Phys, 106 (1936) pp. 675-691.
[49] W. Buckel and R. Hilsch, Z. Phys, 132 (1952) pp. 420-442.
[50] W. Buckel, Z. Phys, 138 (1954) pp. 136-150.
[51] K. L. Chopra, Thin film Phenomena, McGraw-Hill, (1985).
[52] P. J. Hsieh, PhD Thesis, Nanocrystallization and Amorphization of Zr Base Alloys during Accumulative Roll Bonding, National Sun Yat-Sen University, Taiwan, (2004).
[53] R. L. Bickerdike, D. Clark, J. E. Easterabrook, G. Hughes, M. N. Mair, P. G. Partridge, and H. C. Ranson, Int. J. Rapid Solidif., 1 (1984) pp. 305-325.
[54] R. L. Bickerdike, D. Clark, J. E. Easterabrook, G. Hughes, M. N. Mair, P. G. Partridge, and H. C. Ranson, Int. J. Rapid Solidif., 2 (1986) pp. 1-19.
[55] B. X. Liu and O. Jin, Phys. Stat. Sol., 161 (1997) pp. 3-33.
[56] C. Suryanarayana and B. X. Liu, Ion Mixing. In Non-equilibrium Processing of Materials, Oxford, (1999).
[57] W. –S. Hsu, Master Thesis, Effects of Copper Wheel Rotation Speed and Scandium Content on the Characteristics of Al-Y-Ni amorphous ribbons, National Taipei University of Technology, Taiwan, (2011).
[58] R. Pond and R. Maddin, Trans. Met. Soc. AIME, 245 (1969) pp. 2475-2476.
[59] M. S. El-Eskandarany and A. Inoue, Metall. Mater. Trans. A, 33 (2002) pp. 135-143.
[60] C. C. Koch, O. B. Kavin, C. G. Mckamey, and J. O. Scarbrough, Appl. Phys. Lett., 43 (1983) pp. 1017-1019.
[61] J. Lee, F. Zhou, K. H. Chung, N. J. Kim, and E. J. Lavernia, Metall. Mater. Trans. A, 32 (2001) pp. 3109-3115.
[62] A. Sagel, H. Sieber, H. –J. Frecht, and J. H. Perepezko, Acta Mater., 46 (1998) pp. 4233-4241.
[63] Y. Saito, U. Utsunomiya, N. Tsuji, and T. Sakai, Acta Mater., 47 (1999) pp. 579-583.
[64] Z. P. Xing, S. B. Kang, and H. W. Kim, Metall. Mater. Trans. A, 33 (2002) pp. 1521-1530.
[65] A. E. Ermakov, E. E. Yurchikov, and V. A. Barinov, Phys. Met. Metallogr., 52 (1981) pp.50-58.
[66] A. Inoue, K. Ohtera, and A. -P Tsai, Jpn. J. Appl. Phys, 27 (1988) pp. 479-482.
[67] J. H. Perepezko and J. Hebert, Journal of Metals, 54 (2002) pp. 34-39.
[68] T. Egami and Y. Waseda, J. Non-Cryst. Solids, 64 (1984) pp.113-134.
[69] A. Inoue, A. Kitamura, and T. Masumoto, J. Mater. Sci., 16 (1981) pp. 1895-1908.
[70] R. O. Suzuki, Y. Komatsu, K. E. Kobayashi, and P. H. Shingu, J. Mater. Sci., 18 (1983) pp. 1195-1201.
[71] A. Inoue, M. Yamamoto, H. M. Kimura, and T. Masumoto, J. Mater. Sci. Lett, 6 (1987) pp. 194-196.
[72] A. P. Tsai, A. Inoue, and T. Masumoto, Met. Trans., 19A (1988) pp. 391-393.
[73] A. P. Tsai, A. Inoue, and T. Masumoto, Mater. Sci. Lett, 7 (1988) pp. 805-807.
[74] http://www.m-system.co.jp/newsletter/182/clip_contents.html
[75] J. L. Vossen and W. Kern, Thin Film Process, Academic Press, (1978).
[76] L. I. Maissel and R. Glang, Hand Book of Thin Film Technology, McGraw-Hill, (1970).
[77] R. W. Berry, P. M. Hall, and M. F. Harris, Thin Film Technology, Van Nostrand, (1968).
[78] S. L. Rohde, ASM Handbook Volume 5: Surface Engineering, (1994).
[79] J. E. Harper, Ion Beam Sputtering, Thin Film Processes, Academic Press, (1978).
[80] R. E. Lee, J. Vac. Sci. Techno., 16 (1979) pp.164-170.
[81] J. L. Vossen and J. J. Cuomo, Glow Discharge Sputter Deposition, Thin Film Processes, Academic Press, (1978).
[82] L. I. Maissel, The Deposition of Thin Films by Cathode Sputtering, Physics of Thin Films, Academic Press, (1966).
[83] G. K. Wehner, Sputtering by Ion Bombardment, Advances in Electronics and Electron Physics, Academic Press, (1955).
[84] J. Ayers, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization, CRC Press, (2007).
[85] M. H. Grrabow and G. H. Gilmer, Suf. Sci., 194 (1988) pp. 333-346.
[86] A. A. Chernov, Nucleation and Epitaxy, in Modern Crystallography Ш: Crystal Growth, Springer-Verlag, (1984).
[87] K. Reichelt, Vacuum, 38 (1988) pp. 1083-1099.
[88] G. H. Gilmer, H. Huang, and C. Roland, Computational Materials Science, 12 (1998)
pp. 354-380.
[89] K. –N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science: For Electrical Engineers and Materials Scientists, Macmillan, (1992).
[90] M. Ohring, Materials Science of Thin Films Deposition and Structure, Academic Press, (2002).
[91] J. B. Pethicai, R. Hutchings, and W. C. Oliver, Philosophical Magazine A, 48 (1983)
pp. 593-606.
[92] J. L. Loubet, J. M. Georges, O. Marchesini, and G. Meille, Journal of Tribology, 106 (1984) pp. 43-48.
[93] W. C. Oliver, C. J. Mchargue, and S. J. Zinkle, Thin Solid Films, 153 (1987) pp. 185-196.
[94] C. A. Schuh, Materialstoday, 9 (2006) pp. 32-40.
[95] S. J. Bull, Journal of Physics D: Applied Physics, 38 (2005) R393-R413.
[96] G. Hass, W. R. Hunter, and R. Tousey, Journal of the Optical Society of America, 46 (1956) pp. 1009-1012.
[97] http://www.met.reading.ac.uk/pplato2/h-flap/phys6_2.html
[98] A. Ghatak, Optics, Tata McGrew-Hill, (2009).
[99] A. Inoue, K. Amiya, I. Yoshii, H. M. Kimura, and T. Masumoto, Materials Transactions, JIM, 35 (1994) pp. 485-488.
[100] H. Lamb, Philosophical Transactions of the Royal Society of London, 174 (1883)
pp. 519-526.
[101] A. K. Azad and W. Zhang, Optics Letters, 30 (2005) pp. 2945-2947.
[102] U. Mizutani, Materials Science and Engineering, 99 (1988) pp. 165-173.
[103] Y. Liu, S. Hata, K Wata, and A. Shimokohbe. Jpn. J. Appl. Phys. 40 (2001)
pp. 5382-5388.
[104] H. E. Bennett and J. O. Porteus, Journal of the Optical Society of America, 51 (1961)
pp. 123-129.
[105] Y. H. Wang, S. C. Her, C. N. Hsiao, and H. P. Chen, Journal of Science and Engineering Technology, 4 (2008) pp. 81-88.
[106] A. E. J. Wahlberg, Health, 11 (1989) pp. 201-203
[107] I. Sondi and B. Salopek-Sondi, J. Coll. Interf. Sci., 275 (2004) pp.177-182
[108] R. L. Williams and D. F. Williams, Biomater., 9 (1988) pp. 206-212
[109] J. M. Schierholz, L. J. Lucas, A. Rump, and G. Pulverer, J. Hosp. Infect., 40 (1998) pp. 257-262
[110] Y. Y. Chu, Y. S. Lin, C. M. Chang, J. -K. Liu, C. H. Chen, and J. C. Huang, Mater. Sci. Eng. C, 36 (2014) pp. 221-225.
[111] P. T. Chiang, G. J. Chen, S. R. Jian, Y. H. Shih, J. C. Chiang, and C. H. Lai, Fooyin J. Health Sci., 2(1) (2010) pp. 12-20.
[112] W. H. Wang, J. H. Hsu, and J. C. Huang, Appl. Phys. Lett., 103 (2013) 161906.
[113] Y. T. Lin, Y. L. Chung, Z. K. Wang, and J. C. Huang, Intermetallics, 57 (2015) pp. 133-138.
[114] https://en.wikipedia.org/wiki/Electrical_resistivities_of_the_elements_(data_page)
[115] A. Takeuchi and A. Inoue, Materials Transactions, JIM, 46(12) (2005) pp. 2817-2829.
[116] Y. T. Lin, Y. L. Chung, Z. K. Wang, and J. C. Huang, Intermetallics, 57 (2015)
pp. 133-138.
[117] S. Y. Kuan, X. H. Du, H. S. Chou, and J. C. Huang, Surface and Coating Technology,
206 (2011) pp.1116-1119.
[118] Y. Huang, Y. L. Chiu, J. Shen, Y. Sun, and J. J. J. Chen, Intermetallics 18 (2010)
pp. 1056-1061.
[119] D. H. Jeong, U. Erb, K. T. Aust, and G. Palumbo, Scr. Mater. 48 (8) (2003)
pp. 1067-1072
[120] C. T. Pan, Y. C. Chen, Po-Hung Lin, C. C. Hsieh, F. T. Hsu, Po-Hsun Lin, C. M. Chang, J. H. Hsu, and J. C. Huang, Optics Express, 22 (2014) pp. 14411-14424.
[121] C. M. Chang, C. H. Wang, J. H. Hsu, and J. C. Huang, Thin Solid Films, 571 (2014)
pp. 194-197.
[122] C. T. Pan, T. L. Yang, Y. C. Chen, C. M. Chang, J. H. Hsu, and J. C. Huang, Optik, 127 (2016) pp. 6850-6857.
[123] Y. H. Liu, T. Fujita, A. Hirata, S. Li, H. W. Liu, W. Zhang, A. Inoue and
M. W. Chen, Intermetallics, 21 (2012) pp. 105-114
[124] L. G. Bernland, O. Hunderi and H. P. Myers, Phys. Rev. Lett. 31(6) (1973) pp. 363-365.
[125] J. C. Miller, Phil. Mag. 20 (1969) pp. 1115-1132.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code