Responsive image
博碩士論文 etd-0008118-152902 詳細資訊
Title page for etd-0008118-152902
論文名稱
Title
藉由溶膠凝膠法製備低溫自發成長氧化鋅薄膜應用於可撓式有機光電元件
Spontaneous Growth by Sol-gel Process of Low Temperature ZnO Thin Film in Flexible Organic Optoelectronic Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
173
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-12-20
繳交日期
Date of Submission
2018-01-09
關鍵字
Keywords
內部光萃取結構、陰極緩衝層、氧化鋅、低溫、可撓式、溶膠凝膠法
Flexible, Low temperature, Zinc oxide, Cathode buffer layer, Internal light extraction structure, Sol-gel
統計
Statistics
本論文已被瀏覽 5686 次,被下載 9
The thesis/dissertation has been browsed 5686 times, has been downloaded 9 times.
中文摘要
本論文研究主要分為兩個區塊,第一個部分是反置式有機太陽能電池,經由溶膠凝膠法製備不同比例及濃度之氧化鋅薄膜應用於陰極緩衝層,藉由薄膜表面型態來提升元件轉換效率,並探討氧化鋅薄膜之材料特性,後續應用於PEN可撓式有機太陽能電池;第二個部分是將氧化鋅薄膜作為內部光萃取結構以應用於有機發光二極體,利用不同氧化鋅濃度與厚度改變薄膜表面粗糙度,分析其結構對於元件出光效率的影響,最後製程PEN可撓式有機發光二極體。
本研究第一部分利用溶膠凝膠法製備氧化鋅溶液,以調控溶質比例的方法,將氧化鋅溶膠凝膠以溶質比例為1:1.2、1:1與1:0.8莫耳比(醋酸鋅:乙醇胺)進行不同濃度製備,比較並探討其成膜後之差異。其中以溶質比為1:1與1:0.8莫耳比所製備之氧化鋅,降低烤乾溫度後,作為陰極緩衝層應用於反置式有機太陽能電池,其元件轉換效率得到提升的效果。並成功應用在塑膠基板,製作可撓反置式有機太陽能電池。
在此研究中,以探討不同溶質比例之氧化鋅光學特性與表面型態,並調控氧化鋅薄膜烤乾溫度,觀察其薄膜特性對於後續電學特性之影響。結果發現,當溶質比為1:1與1:0.8莫耳比所製備的氧化鋅溶膠凝膠,在較低溫度對薄膜烤乾,再經過塗佈主動層而進行二次烤乾後,薄膜表面型態由一般氧化鋅柱狀結構,轉變為文獻之脊狀結構,並在適當的膜厚下能更提升入射光在主動層中之光路徑,以利於主動層之光吸收,進一步達到元件轉換效率的提升,與先前文獻相比,低溫氧化鋅薄膜能應用於可撓式軟性基板上。後續氧化鋅薄膜以125oC、150oC烤乾後,進而將其作為陰極緩衝層應用於反置式有機太陽能電池,元件結構為ITO/ ZnO/ P3HT:PCBM/ MoO3/ Ag,其元件面積為0.03 cm2,在AM 1.5G 100 mW/cm2的模擬太陽光源照射下,短路電流密度分別由8.00 mA/cm2提升至8.59 mA/cm2,及7.64 mA/cm2提升至8.34 mA/cm2,光電轉換效率分別達到3.38%與3.30%,並且相較於傳統式太陽能電池與文獻高溫氧化鋅元件效率2.55%,其效率提升29-33%,將低溫氧化鋅薄膜應用於PTB7:PC71BM之主動層元件其效率趨勢依然相同。後續製作在PEN軟性基板上,達到元件轉換效率1.53%。
本研究另一個部分同樣藉由溶膠凝膠法製備氧化鋅溶液以沉積薄膜,不同於先前反置式有機太陽能電池之陰極緩衝層應用端,其氧化鋅薄膜表面能產生自發生長之脊狀結構,能應用於有機發光二極體之內部光萃取結構,將Waveguide mode給萃取出來,且具備不規則週期性結構,因此不會受到波長放光之影響。研究中經由調控濃度與轉速之方法,提升成膜後的烤乾溫度,以改變氧化鋅薄膜粗糙度,能有效提高OLED元件出光效率,並成功應用在塑膠基板,製作可撓式有機發光二極體。
於第二部分研究中,探討不同濃度之氧化鋅薄膜光學特性、表面型態與電學特性,將氧化鋅溶膠凝膠以濃度設為0.4 M、0.6 M之ZAD溶入EGME進行製備,比較並探討其成膜後之差異,與調控氧化鋅薄膜烤乾溫度,觀察其薄膜特性對於元件光萃取效率之影響。結果發現,其濃度為0.6 M所配製的氧化鋅溶膠凝膠,經由轉速2000 rpm與125oC烤乾後,控制其薄膜表面微米結構之粗糙度,能有效提升元件光萃取效率,而提升175oC對薄膜烤乾後於不同轉速下,元件光萃取效率能得到最好的提升效果,其元件結構為ITO/ HAT-CN (30 nm)/ TAPC (20 nm)/ mCP:10%Firpic (40 nm)/ TmPyPb (40 nm)/ LiF (0.8 nm)/ Al (200 nm),元件面積為0.03 cm2,在1000、1500、2000 rpm轉速後,其外部量子效率在亮度為1000 cd/m2時增進約20%,與Setfos模擬結果相似。並且後續成功製作在PEN軟性基板上,其EQE提升15%。

由本論文研究得知低溫氧化鋅薄膜作為陰極緩衝層應用於高效率反置式有機太陽能電池需具備以下條件:
 良好的電子遷移率、能階匹配、高穿透度、高穩定性、適當的膜厚(40-50 nm)、表面型態(脊狀>柱狀)與粗糙度(3.85 nm)。
相較於反置式有機太陽能電池,低溫氧化鋅薄膜作為內部光萃取結構應用於高效率有機發光二極體則需具備以下條件:
 折射率匹配、高穿透度、高穩定性、較厚的薄膜(75-110 nm)、表面型態(脊狀) 與較大的粗糙度(80-90 nm)。
Abstract
Research in this thesis is mainly divided into two parts. The first part deals with inverted organic solar cells. Zinc oxide (ZnO) thin films are synthesized as cathode buffer layers with varied solution concentrations in sol-gel processing. The conversion efficiency of organic solar cells is improved via surface morphology transitions of the films. The properties of the ZnO thin films are investigated for their application in poly(ethylene naphthalate) (PEN)-based flexible organic solar cells. The second part aims to apply the ZnO thin films in organic light-emitting diodes (OLEDs) as internal light extraction structures. The surface roughness of the films is changed by adjusting the concentration of the ZnO solution and film thickness, and the structural effects on emission efficiency are analyzed. Finally, PEN-based flexible OLEDs are fabricated.
The first part of the research involves preparing ZnO thin films via sol-gel processing. Solutes of zinc acetate and ethanolamine are mixed in molar ratios of 1:1.2, 1:1, and 1:0.8 to form different ZnO sol-gel solutions in order to compare the thin films obtained from these solutions. The ZnO films are applied as cathode buffer layers for inverted organic solar cells after reducing the baking temperature. An improved conversion efficiency is exhibited by the solar cells with the ZnO films prepared from the solutions with molar ratios of 1:1 and 1:0.8. Flexible inverted organic solar cells have been assembled on plastic substrates successfully.
In this study, the optical properties and surface morphology of the ZnO films prepared with different solute ratios are compared; the film baking temperatures of ZnO films are adjusted to observe the effect of film characteristics on the electrical properties of the devices. It is observed that for ZnO sol-gels with solute ratios of 1:1 and 1:0.8 when the films are baked at low temperatures followed by spin coating of the photoactive layers and baking for a second time, the morphology of the ZnO films changed from a columnar structure to a ridge structure, as has been described in the literature. Furthermore, the light path of the incident rays in the photoactive layers is increased with the ridge structure at an appropriate thickness of the films, which improves light trapping in the photoactive layers and the conversion efficiency of devices. Low-temperature ZnO thin films can be applied to flexible substrates, in contrast to the previous literature. After being baked at 125°C and 150°C, ZnO thin films are applied as cathode buffer layers in inverted organic solar cells. The architecture of the solar cells comprises ITO/ ZnO/ P3HT:PCBM/ MoO3/ Ag. The device area is 0.03 cm2. By using a solar simulator equipped with an AM1.5G filter at an illumination of 100 mW/cm2, the short-circuit current densities increased from 8.00 mA/cm2 to 8.59 mA/cm2, and from 7.64 mA/cm2 to 8.34 mA/cm2, respectively, for the films baked at 125°C and 150°C; further, photoelectric conversion efficiencies of 3.38% and 3.30%, respectively, are demonstrated. Their efficiency is enhanced by 29-33% relative to the efficiency of 2.55% in the case of the conventional solar cells with high-temperature ZnO films described in the literature. Solar cells with PTB7:PC71BM photoactive layers exhibit the same enhancement of efficiency when adopting low-temperature ZnO thin films. A conversion efficiency of 1.53% is achieved in solar cells with PEN-based flexible substrates.
Another part of this research involved the deposition of ZnO thin films using sol-gel methods for other applications. In contrast to their previous application in OLEDs as cathode buffer layers, a self-grown ridge structure formed on the surface of ZnO films can be applied to the internal light extraction structure of OLEDs. The waveguide mode is extracted and the irregular periodic structure protects the extraction from the influence of the wavelength of light emitted. In this study, the roughness of ZnO films is adjusted to improve the emission efficiency of OLEDs by manipulating the concentration, spin rate, and baking temperature of the films. Flexible OLEDs have been fabricated successfully by depositing the films on plastic substrates.
The second part of this research deals with the optical properties, surface morphology, and electrical properties of the ZnO thin films prepared from different concentrations of solutions. Accordingly, 0.4 M and 0.6 M solutions of zinc acetate dihydrate (ZAD) are dissolved in ethylene glycol monomethyl ether (EGME) to synthesize ZnO sol-gels in order to compare and discuss the differences in the thin films obtained from them. The effects of film characteristics on the light extraction efficiency of OLEDs are demonstrated by adjusting the baking temperature of the films. It has been discovered that, when the ZnO sol-gel with 0.6 M ZAD is spin-coated at 2000 rpm and baked at 125°C, the light extraction efficiency of the devices can be improved effectively by controlling the surface roughness of the film microstructure. The optimum light extraction efficiency of OLEDs is obtained after the films are spin-coated at different rates and baked at 175°C. The architecture of the devices is composed of ITO/ HAT-CN (30 nm)/ TAPC (20 nm)/ mCP:10%Firpic (40 nm)/ TmPyPb (40 nm)/ LiF (0.8 nm)/ Al (200 nm). The area of the devices is 0.03 cm2. When the spin rate is 1000, 1500, and 2000 rpm, the external quantum efficiency (EQE) of the devices is enhanced by approximately 20% at a luminance of 1000 cd/m2, which is consistent with the Setfos simulation results. An improvement of 15% in the EQE is exhibited by the OLEDs on PEN-based flexible substrates.

Based on this research, the following prerequisites must be satisfied when low-temperature ZnO thin films are applied as cathode buffer layers in high-efficiency inverted organic solar cells:
 Good electron mobility; energy levels matching; high penetration; high stability; proper film thickness (40-50 nm); surface morphology (ridge structure> columnar structure); and roughness (3.85 nm).

The following prerequisites are essential when low-temperature ZnO thin films are applied to high-efficiency OLEDs as internal light extraction structures:

 Refractive index matching; high penetration; high stability; thicker films (75-110 nm); proper surface morphology (ridge structure); and higher roughness (80-90 nm).
目次 Table of Contents
致 謝 i
中文摘要 ii
Abstract iv
目 錄 vii
圖 目 錄 xiii
表 目 錄 xx
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 4
1-3 參考文獻 6
第二章 氧化鋅薄膜與製備總論 7
2-1 氧化鋅透明導電薄膜 7
2-1-1 氧化鋅薄膜之電學特性 8
2-1-2 氧化鋅薄膜之光學特性 8
2-1-3 氧化鋅薄膜之製備方法 10
2-2 溶膠凝膠法 11
2-2-1 溶膠凝膠法原理 11
2-2-2 溶膠凝膠法製備材料 12
2-3 參考文獻 14
第三章 高分子有機太陽能電池總論 15
3-1 前言 15
3-2太陽能電池種類與發展 17
3-3 研究背景 19
3-3-1 染料敏化太陽能電池 19
3-3-2小分子有機太陽能電池 19
3-3-3 高分子有機太陽能電池 20
3-4 元件結構與技術發展 23
3-4-1 單層結構有機太陽能電池 23
3-4-2 雙層異質介面有機太陽能電池 23
3-4-3 混合層異質介面有機太陽能電池 24
3-4-4 電極緩衝層應用於混合層異質介面有機太陽能電池 25
3-5 工作原理介紹 26
3-5-1 有機太陽能電池基礎原理 26
3-5-2 有機太陽能電池輸出特性 29
3-5-3 有機太陽能電池元件操作分析 32
3-5-4 能量及電荷轉移機制 34
3-5-5 大氣質量 35
3-6 研究動機 37
3-6-1 高分子有機太陽能電池優勢 37
3-6-2 可撓式反置有機太陽能電池應用 38
3-6-3 陰極緩衝層材料 38
3-7 文獻回顧 40
3-8 參考文獻 43
第四章 小分子有機發光二極體總論 46
4-1 前言 46
4-2 有機發光二極體的發展 48
4-3 元件結構與技術 50
4-3-1 雙層A型 50
4-3-2 雙層B型 50
4-3-3 三層A型 51
4-3-4 三層B型 51
4-4 工作原理介紹 53
4-4-1 有機與無機發光機制比較 53
4-4-2 有機發光二極體基礎理論 54
4-4-3 能量轉移機制 56
4-5 元件材料介紹 59
4-5-1 陽極 59
4-5-2 電洞注入層 59
4-5-3 電洞傳輸層 60
4-5-4 高分子發光層 60
4-5-5 小分子發光層 61
4-5-6 電子傳輸層 61
4-5-7 電子注入層 62
4-5-8 陰極 62
4-6 摻雜技術 63
4-7 濃度淬息效應 65
4-8 三重態自我毀滅現象 66
4-9 發光效率定義 67
4-10 光色鑑定 69
4-11 研究動機 70
4-12 文獻回顧 72
4-13 參考文獻 75
第五章 實驗方法與流程 77
5-1 實驗架構 77
5-1-1 反置式有機太陽能電池架構 77
5-1-2 有機發光二極體架構 79
5-2 實驗材料 80
5-2-1 反置式有機太陽能電池材料 80
5-2-2 有機發光二極體材料 82
5-3 實驗設備 85
5-3-1 製程設備 85
5-3-2 量測設備 87
5-4 元件材料前配製 93
5-4-1 PEDOT:PSS (AI4083) 93
5-4-2 溶膠凝膠氧化鋅 93
5-4-3 P3HT/PC61BM 93
5-4-4 PTB7/PC71BM 93
5-5 反置式有機太陽能電池實驗步驟 94
5-5-1 ITO基板蝕刻 94
5-5-2 常規有機太陽能電池元件製程 95
5-5-3 反置式有機太陽能電池元件製程 96
5-6 有機發光二極體實驗步驟 98
5-7 參考文獻 100
第六章 反置式有機太陽能電池之結果討論 101
6-1 ZAD與MEA莫耳數比為1:1.2配製之氧化鋅薄膜 101
6-1-1 薄膜穿透率分析 101
6-1-2 薄膜表面形態分析 102
6-1-3製程元件數據分析 104
6-1-4 降低氧化鋅薄膜烤乾溫度對元件的影響 105
6-1-5 結論 106
6-2 ZAD與MEA莫耳數比為1:1配製之氧化鋅薄膜 107
6-2-1 薄膜穿透率分析 107
6-2-2 薄膜表面形態分析 108
6-2-3製程元件數據分析 108
6-2-4 降低氧化鋅薄膜烤乾溫度對元件的影響 109
6-2-5 降低烤乾溫度對氧化鋅薄膜表面型態的影響 110
6-2-6 較低烤乾溫度的氧化鋅薄膜對主動層吸收的影響 111
6-2-7 電流感測表面型態 112
6-2-8 結論 113
6-3 ZAD與MEA莫耳數比為1:0.8配製之氧化鋅薄膜 114
6-3-1 薄膜穿透率分析 114
6-3-2 薄膜表面形態分析 115
6-3-3製程元件數據分析 116
6-3-4 降低氧化鋅薄膜烤乾溫度對元件的影響 117
6-3-5 結論 118
6-4 綜合比較 119
6-4-1 薄膜元素分析 119
6-4-2 薄膜結晶分析 120
6-4-3 元件結構分析 121
6-4-4 元件輸出特性分析 122
6-4-5 元件穩定性分析 123
6-5 軟性基板元件製程 125
第七章 小分子有機發光二極體之結果討論 126
7-1 配製0.4 M之氧化鋅薄膜 126
7-1-1 薄膜穿透率分析 126
7-1-2 薄膜折射率分析 127
7-1-3 薄膜表面形態分析 128
7-1-4 製程元件數據分析 129
7-1-5 結論 131
7-2 配製0.6 M之氧化鋅薄膜 132
7-2-1 薄膜表面形態分析 132
7-2-2 製程元件數據分析 133
7-2-3 結論 135
7-3 提升0.6 M烤乾溫度之氧化鋅薄膜 136
7-3-1 薄膜穿透率分析 136
7-3-2 薄膜表面形態分析 136
7-3-3 製程元件數據分析 137
7-3-4 薄膜表面結構分析 139
7-3-5 光萃取模擬軟體 139
7-3-6 結論 140
7-4 配製0.8 M之氧化鋅薄膜 141
7-4-1 薄膜穿透率分析 141
7-4-2 薄膜表面形態分析 141
7-4-3 製程元件數據分析 142
7-4-4 結論 144
7-5 軟性基板元件製程 145
第八章 總結 148
參考文獻 References
[1] H. L. Yip, and A. K. Y. Jen, Energy Environ. Sci. 5 (2012) 5994.
[2] A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett. 93 (2008) 221107.
[3] F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, J. Mater. Chem. 19 (2009) 5442.
[4] J. C. Wang, W. T. Weng, M. Y. Tsai, M. K. Lee, S. F. Horng, T. P. Perng, C. C. Kei, C. C. Yu, and H.F. Meng, J. Mater. Chem. 20 (2010) 862.
[5] N. O. V. Plank, M.E. Welland, J. L. MacManus-Driscoll, and L. Schmidt-Mende, Thin Solid Films. 20 (2008) 7218.
[6] Z. Hu, J. Zhang, and Y. Zhu, Sol. Energ. Mat. Sol. C. 117 (2013) 610.
[7] Y. Lare, A. Godoy, L. Cattin, K. Jondo, T. Abachi, F. R. Diaz, M. Morsli, K. Napo, M. A. del Valleand, and J. C. Bernede, Appl. Surf. Sci. 255 (2009) 6615.
[8] X. Yu, X. Yu, Z. Hu, J. Zhang, G. Zhaoand, and Y. Zhao, Mater. Lett. 108 (2013) 50.
[1] 林素霞, 成功大學材料科學與工程學系博士論文. (2003).
[2] R. S. Loewe, P. C. Ewbank, J. Liu, L. Zhai, and R. D. McCullough, Macromolecules. 34 (2001) 4324.
[3] Sunglae Cho, Jing Ma, Yunki Kim, Yi Sun, George K. L. Wong, and John B. Ketterson, Appl. Phys. Lett. 75 (1999) 2761.
[4] 楊明輝, 工業材料雜誌, 179 (2001) 134.
[5] Masashi Ohyama, Hiromitsu Kozuka, and Yoshinobu Yoko, Thin solid films. 306 (1997) 78.
[6] Y. Natsume, and H. Sakata, Mater. Chem. Phys. 78 (2002) 170.
[7] Rodrigo F. Silva, and Maria E.D. Zaniquelli, Thin Solid Films. 449 (2004) 86.
[8] 黃政儒, 義守大學材料科學與工程學系碩士論文. (2005).
[9] Delia Cristina Altamirano-Juarez, Gerardo Torres-Delgado, Sergio Jimenez-Sandoval, and Omar Jimenez-Sandoval, Sol. Energy Mater. Sol. Cells. 82 (2004) 35.
[10] Rodrigo F. Silva, and Maria E.D. Zaniquelli, Thin Solid Films. 449 (2004) 86.
[11] M. Ebelman, and Ann, Cbim. Phys. 16 (1846) 129.
[12] M. Ebelman, and C.R Acad, Sci. 25 (1847) 854.
[13] 蔡裕榮, 中正大學化學所碩士論文. (2002).
[14] G.K. Paul, and S.K. Sen, Mater. Lett. 57 (2002) 742.
[15] 江鍾豪, 明新科技大學精密機電工程研究所碩士論文. (2007).
[1] BP Statistical Review of World Energy. (2015).
[2] D. M. Chapin, C. S. Fuller, and G. L. Pearson, J. Appl. Phys. 25 (1954) 676.
[3] J. Zhao, A Wang, and M. A. Green, Prog. Photovolt. : Res. Appl. 7 (1999) 471.
[4] Sm Staff, Solar Magazine. (2017) 5.
[5] B. O’Regan and M. Grätzel, Nature. 353 (1991) 737.
[6] V. Y. Merritt and H. J. Hovel, Appl. Phys. Lett. 29 (1976) 414.
[7] C. W. Tang, Appl. Phys. Lett. 48 (1986) 183.
[8] P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79 (2001) 126.
[9] 李永舫, 物理學學報. 33 (2017) 268.
[10] J. Tsukamoto, H. Ohigashi, K. Matsumura, and A. Takahashi, Jpn. J. Appl. Phys. 20 (1981) 127.
[11] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science. 258 (1992) 1474.
[12] G. Yu, K. Pakbaz and A. J. Heeger, Appl. Phys. Lett. 64 (1994) 3422.
[13] G. Yu, J. Gao, J. Hummelen, and F. Wudl, A. J. Heeger, Science. 270 (1995) 1789.
[14] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78 (2001) 841.
[15] P. Schilinsky, C. Waldauf, and C. J. Brabec, Appl. Phys. Lett. 81 (2002) 3885.
[16] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater. 13 (2003) 85.
[17] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4 (2005) 864.
[18] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15 (2005) 1617.
[19] 21. L. J. A. Koster, V. D. Mihailetchi, and P. W. M. Blom, Appl. Phys. Lett. 88 (2006) 093511.
[20] Chun-Chiao Lin, Shie-Kai Tsai, and Mei-Ying Chang, Org. Electron. 46 (2017) 218.
[21] D. Kearns and M. Calvin, J. Chem. Phys.29 (1958) 950.
[22] C. W. Tang, Appl. Phys. Lett. 48 (1986) 183.
[23] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudi, Science. 27 (1992) 1474.
[24] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science. 270 (1995) 1789.
[25] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens, L. Sanchez, J. C. Hummelen and T. Fromherz, Thin Solid Films. 368 (2002) 403.
[26] K. M. Coakley and M. D. McGehee, Chem. Mater. 16 (2004) 4533.
[27] S.-H. Oh, S.-I. Na, J. Jo, B. Lim, D. Vak and D.-Y. Kim, Adv. Funct. Mater. 20 (2010) 1977.
[28] P.W. Atkins, WILEY-VCH. (2001).
[29] M.P. Thekackra, NASA Technical Report. (1970) 351.
[30] M. Jørgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen and F. C. Krebs, Adv. Mater. 24 (2012) 580.
[31] E. Pavlopoulou, G. Fleury, D. Deribew, F. Cousin, M. Geoghegan and G. Hadziioannou, Org. Electron. 14 (2013) 1249.
[32] J. K. J.van Duren, X. Yang, J Loos, C. W. T. B. Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, Adv Funct. Mater, 5 (2004) 425.
[33] P. A. van Hal, M. M. Wienk, J. M. Kroon, W. J. H. Verhees, L.H.Slooff, W. J. H. Van Gennip, P. Jonkheijm, and R. A. J. Janssen, Adv. Mater. 2 (2003) 118.
[34] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, and C. S. Ha, M. Ree, Nature Materials. 5 (2006) 197.
[35] M. Reyes-Reyes, Kyungkon Kim, and D. L. Carroll, Appl. Phys. Lett. 87 (2005) 083506.
[36] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv Funct. Mater. 1 (2003) 85.
[37] A. W. Hains, and T. J. Marks, Appl. Phys. Lett. 92 (2008) 023504.
[38] Z. Nan, L. Qian, M. Jie, L. Z. Feng, Y. L. Ying, Y. S. Gen, and C. Y. Sheng, Chin. Phys. Lett. 25 (2008) 1091.
[39] A. K. Pandey, P. E. Shaw, I. D. W. Samuel, and J.M. Nunzi, Appl. Phys. Lett. 94 (2009) 103303.
[40] C. M. Ramsdale, A. C. Arias, J. D. MacKenzie, R.d H. Friend, and N. C. Greenham, Res. Soc. 725 (2002) 7.
[41] P. Vivo, J. Jukola, M. Ojala, V. Chukharev, and H. Lemmetyinen, Sol. Energy Mater. Sol. Cells. 92 (2008) 1416.
[42] A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, Appl. Phys. Lett. 90 (2007) 163517.
[43] Y. Li, Y. Hou, Y. Wang, L. Qin, Z. Feng, B. Feng, and F. Teng, Synthetic Metals. 157 (2007) 956.
[44] J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, Appl. Phys. Lett. 91 (2007) 113520.
[45] J. K. Lee, N. E. Coates, S. Cho, N. S. Cho, D. Moses, G. C. Bazan, K. Lee, and A. J. Heeger, Appl. Phys. Lett. 92 (2008) 243308.
[46] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, and A. J. Heeger, Adv. Mater. 23 (2011) 1679.
[47] D. Li, Y. Chen, P. Du, Z. Zhao, H. Zhao, Y. Ma, and Z. Sun, RSC Adv. 5 (2015) 88973.
[48] T. Z. Oo, R. D. Chandra, N. Yantara, R. R. Prabhakar, L. H. Wong, N. Mathews, and S. G. Mhaisalkar, Org. Electron. 13 (2012) 870.
[49] Y. Zhou, H. Cheun, W. J. Potscavage, Jr, C. Fuentes-Hernandez, S. J. Kim, and B. Kippelen, J. Mater. Chem. 20 (2010) 6189.
[50] S. Woo, W. H. Kim, H. Kim, Y. Yi, H. K. Lyu, and Y. Kim. Adv. Energy. Mater. 7 (2014) 1301692.
[51] M. J. Tan, S. Zhong, R. Wang, Z. Zhang, V. Chellappan, and W. Chen, Appl. Phys. Lett. 103 (2013) 063303.
[52] S. Liu, K. Zhang, J. Lu, J. Zhang, H. L. Yip, F. H, and Y. Cao. J. Am, Chem. Soc. 135 (2013) 15326.
[53] T. Kuwabara, M. Nakamoto, Y. Kawahara, T. Yamaguchi, and K. Takahashi, Appl. Phys. Lett. 105 (2009) 124513.
[54] J. J. Zhu, G. Q. Fan, H. X. Wei, Y. Q. Li, S. T. Lee, and J. X. Tang, Cryst Eng Comm. 14 (2012) 8090.
[55] G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88 (2006) 253503.
[56] D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti, and A. B. Holmes, Appl. Phys. Lett. 65 (1994) 21.
[57] M. Glatthaar, M. Niggemann, B. Zimmermann, P. Lewer, M. Riede, A. Hinsch, and J. Luther, Thin Solid Films. 491 (2005) 298.
[58] M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89 (2006) 143517.
[59] S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K. Y. Jen, Appl. Phys. Lett. 92 (2008) 253301.
[1] M. Pope, P. Magnante, and H. P. Kallmann, J. Chem. Phys. 38 (1963) 2042.
[2] C. W. Tang, and S. A. Vanslyke, Appl. Phys. Lett. 51 (1987) 913.
[3] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature. 347 (1990) 539.
[4] C. W. Tang, Appl. Phys. Lett. 48 (1986) 183.
[5] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys, 27 (1988) L713.
[6] M. Era, C. Adachi, T. Tsutsui, and S. Saito, Chem. Phys. Lett. 178 (1991) 488.
[7] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 61 (1992) 761.
[8] J. Kido, M. Kimura, and K. Nagai, Science. 267 (1995) 1332.
[9] J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett. 67 (1995) 2281.
[10] Z. H. Kafafi, Organic electroluminescence: CRC Press. (2005).
[11] S. M. Sze, Semiconductor devices: physics and technology. (2008).
[12] S. Miyata, and H. S. Nalwa, Organic electroluminescent materials and devices: Crc press. (1997).
[13] K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 83 (1998) 4928.
[14] X. W. Chen, W. C. H. Choy, C. J. Liang, P. K. A. Wai, and S. He, Appl. Phys. Lett. 91 (2007) 221112.
[15] C. W. Tang, S. A. Vanslyke, and C. H. Chen, J. Appl. Phys. 65 (1989) 3610.
[16] 陳金鑫、黃孝文, 五南出版社. (2005).
[17] T. Förster, Annalen der Physik. 437 (1948) 55.
[18] D. L. Dexter, J. Chem. Phys. 21 (1953) 836.
[19] S. Miyata, and H. S. Nalwa, Gordon and Breach Science Publishers. (1997) 9.
[20] S.A. VanSlyke, C.H. Chen, and C.X. Tang, Appl. Phys. Lett. 69 (1996) 2160.
[21] B. S. Mashford, M. Stevenson, and Z. Popovic, Nat. Photonics. 7 (2013) 407.
[22] H. Sasabe, H. Nakanishi, and Y. Watanabe, Adv. Funct. Mater. 23 (2013) 5550.
[23] W. S. Jeon, J. S. Park, and L. Li, Org. Electron. 13 (2012) 939.
[24] S. H. Cho, S. W. Pyo, and M. C. Suh, Synth. Met. 162 (2012) 402.
[25] S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69 (1996) 2160.
[26] D. M. Pai, J. F. Yanus, and M. Stolka, J. Phys. Chem. 88 (1984) 4714.
[27] A. A. Shoustikov, Y. J. You, and M. E. Thompson, IEEE Journal of Selected Topics in Quantum Electronics. 4 (1998) 3.
[28] M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B. 62 (2000) 10967.
[29] Y. r. Sun, and S. R. Forrest, Appl. Phys. Lett. 91 (2007) 263503.
[30] 顧鴻壽, 光電有機電激發光顯示器技術及應用, 新文京開發, (2001).
[31] B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, and I. D. W. Samuel, Adv. Mater. 13 (2001) 123.
[32] Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. H. Cho, Y. C. Kim, and Y. R. Do, Appl. Phys. Lett. 82 (2003) 3779.
[33] J. W. Shin, D. H. Cho, J. Moon, C. W. Joo, S. K. Park, J. Lee, J. H. Han, N. S. Cho, J. Hwang, J. W. Huh, H. Y. Chu, and J. I. Lee, Org. Electron. 15 (2014) 196.
[34] T. Höfler, M. Weinberger, W. Kern, S. Rentenberger, and A. Pogantsch, Adv. Funct. Mater. 16 (2006) 2369.
[35] S. Y. Nien, N. F. Chiu, Y. H. Ho, J. H. Lee, C. W. Lin, K. C. Wu, C. K. Lee, J. R. Lin, M. K. Wei, and T. L. Chiu, Appl. Phys. Lett. 94 (2009) 103304.
[36] H. J. Peng, Y. L. Ho, X. J. Yu, and H. S. Kwok, J. Appl. Phys. 96 (2004) 1649.
[37] D.-H. Kim, J. Y. Kim, D.-Y. Kim, J. H. Han, and K. C. Choi, Org. Electron. 15 (2014) 3183.
[38] W. Zhu, X. Wu, W. Sun, L. Sun, K. Guo, M. Tang, and P. Zhou, Org. Electron. 15 (2014) 1113.
[39] F. Galeotti, W. Mróz, G. Scavia, and C. Botta, Org. Electron. 14 (2013) 212.
[40] M. Slootsky, and S. R. Forrest, Opt. Lett. 35 (2010) 1052.
[41] J. Zhou, N. Ai, L. Wang, H. Zheng, C. Luo, Z. Jiang, S. Yu, Y. Cao, and J. Wang, Org. Electron. 12 (2011) 648.
[42] T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig, and U. Lemme, Opt. Express. 20 (2012) 932.
[43] C. Y. Chen, W. K. Lee, and Y. J. Chen, Adv. Mater. 27 (2015) 4883.
[44] Ki-Han Kim b, and Soo-Young Park a, b, Org. Electron. 36 (2016) 103.
[1] 蔡協凱, 中山大學碩士論文, (2016).
[2] 蘇衍誠, 中山大學碩士論文, (2017).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code