Responsive image
博碩士論文 etd-0009115-153616 詳細資訊
Title page for etd-0009115-153616
論文名稱
Title
高分子電解質之製備與燃料電池應用評估
Preparation and Evaluation of Polymer Electrolytes for Fuel Cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
251
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-27
繳交日期
Date of Submission
2015-02-02
關鍵字
Keywords
觸媒層、聚芳香醚高分子、質子交換膜、燃料電池、多氟磺酸離子性高分子
catalyst layer, poly(arylene ether)s, proton exchange membrane, fuel cells, PerFluoroSulfonic Acid ionomer
統計
Statistics
本論文已被瀏覽 5725 次,被下載 0
The thesis/dissertation has been browsed 5725 times, has been downloaded 0 times.
中文摘要
多氟磺酸離子性高分子(PFSA)為一種已知且曾經被大量研究之高分子,除
了被過度延伸的成就之外,它也遭遇:(1)價格昂貴;(2)低濕或高溫條件操作下喪
失質子導電度,兩大無法解決之困難。由於多氟磺酸離子性高分子滲透膜之氣體
滲透率過大,因此經常加速觸媒層中奈米組成物的裂解以及導致在相對應電極之
氣體純度下降而影響效率;更嚴重的情況是,因為多氟磺酸離子性高分子提供極
高度酸性之環境,因此加速白金觸媒之老化及造成各組成物的裂解。從科技角度
的觀點,上述的許多缺點已經引領大量的研究團隊投入到尋找替代固態高分子電
解質的研究領域。
本論文將著眼於設計供質子交換膜燃料電池觸媒層使用的非多氟磺酸
(non-PFSA)固態高分子電解質。在此之非多氟磺酸高分子主要以發展具有高立體阻
礙之聚芳香醚高分子為主。
Abstract
The current material of choice for the proton exchange membrane (PEM) and for the solid electrolyte in the catalyst layer currently comes from a class of materials known as PerFluoroSulfonic Acid ionomer (PFSA). Despite its ubiquitous and it is costly, suffers from a loss of conductivity at low relative humidity and/or elevated temperatures, and despite it’s relative chemical stability it may exacerbate Pt catalyst dissolution and contribute to the rate of component degradation. Alternating ionomers are sought.
This proposal addresses the challenge of developing non-PFSA ionomers for use as proton conducting media in catalysts layer. It does this by focusing on the development of a class of materials classified as sterically-encumbered poly(arylene ether)s.
目次 Table of Contents
目錄
論文審定書 i
致 謝 ii
摘 要 iii
Abstract iv
第一章. 序論 1
1-1 前言 1
1-2 燃料電池種類 2
1-3 質子交換膜燃料電池工作機制 5
1-4質子傳導機制 7
1-5燃料電池的過電壓(overpotential)介紹 10
1-6 質子交換膜燃料電池種類 12
1-6-1全氟離子性高分子薄膜(Perfluorinated polymer) 13
1-6-2非氟離子性高分子薄膜(Non-perfluorinated polymer) 15
1-6-3部分氟化高分子(Partially perfluorinated polymer) 16
1-6-4酸鹼高分子薄膜(Acid-base blends polymer) 17
1-6-5有機/無機混成薄膜(organic/inorganic blend membrane) 18
1-7 碳氫離子性質子交換膜的分子設計(Polymer Architectures for Proton Exchange Membrane) 20
1-7-1交替式共聚高分子(Alternating copolymer) 22
1-7-2團聯式共聚高分子(Random copolymer) 22
1-7-3嵌段式共聚高分子(Block copolymer) 23
1-7-4 接枝式共聚高分子(Graft copolymer) 25
1-8 文獻回顧 27
1-8-1交替式磺酸化聚芳香醚高分子文獻回顧 27
1-8-2團聯式磺酸化聚芳香醚高分子文獻回顧 32
1-8-3嵌段式磺酸化聚芳香醚高分子文獻回顧 43
1-8-4接枝式磺酸化聚芳香醚高分子文獻回顧 46
1-9全球燃料電池市場之脈動 51
1-10 研究動機 54
第二章. 實驗儀器介紹與原理 56
2-1鑑定分析儀器 56
2-1-1高磁場液態磁核共振儀器(Nuclear Magnetic Resonance,NMR) 56
2-1-2基質輔助雷射脫附游離飛行質譜儀(MALDI TOF/TOF) 56
2-1-3凝膠滲透層析儀(Gel Permeation Chromatography,GPC) 57
2-2熱分析儀器 57
2-2-1熱重量分析儀(Thermogravimetric Analyzer,TGA) 57
2-2-2熱示差掃描卡量計(Differential Scanning Calorimetr,DSC) 58
2-2-3熱機械分析儀(Thermal Mechanical Analyzer,TMA) 58
2-3 微觀結構分析 58
2-3-1穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 58
2-3-2原子力顯微鏡(Atomic force microscope,AFM) 59
2-4磺酸化後處理 60
2-5 燃料電池元件(Membrane electrode assambly, MEA) 62
第三章. 交替式共聚高分子之合成及特性研究 65
3-1使用藥品總表 65
3-2實驗流程 67
3-3 雙氟單體合成 68
3-4 高分子聚合 74
3-4-1 P1高分子聚合 74
3-4-2 P2高分子聚合 75
3-4-3 P3高分子聚合 76
3-4-4 P4高分子聚合 77
3-5 高分子磺酸化 78
3-6結果與討論 79
3-6-1單體鑑定以及GPC分析 79
3-6-2 TGA熱穩定性分析 81
3-6-3 磺酸化高分子溶解度測試與IEC數值量測 82
3-6-4 TGA熱穩定性分析 84
3-6-5 吸水率與λ值量測 85
3-6-6 薄膜尺寸安定性 87
3-6-7 質子導電度 88
3-6-8 TEM、AFM微相分離型態觀察 91
3-7 結論 98
3-8 補充資料 99
第四章. 交替式共聚高分子苯環取代基數目對質子導電度的影響 100
4-1 研究動機 100
4-2實驗流程 101
4-3雙酚單體合成 105
4-4高分子聚合 116
4-4-1 A7高分子聚合 116
4-4-2 A8高分子聚合 118
4-4-3 A9高分子聚合 120
4-5高分子薄膜製備 122
4-6高分子磺酸化 122
4-7結果與討論 124
4-7-1高分子TGA熱穩定性分析 124
4-7-2高分子機械強度 125
4-7-3傅立葉紅外線光譜(FT-IR)分析 130
4-7-4磺酸化後的高分子TGA熱穩定性分析 134
4-7-5薄膜之物理、化學性質分析 137
4-7-6質子導電度量測 143
4-7-7氧化與水解穩定性測試 145
4-7-8 TEM微相分離型態觀察 146
4-7-9 燃料電池元件測試 149
第五章. 含有酮基與碸基磺酸化聚芳香醚高分子之合成及特性研究 154
5-1研究動機 154
5-2實驗流程 156
5-3 高分子聚合 157
5-3-1 KP1高分子聚合 157
5-3-2 SP1高分子聚合 158
5-4 高分子磺酸化 159
5-5結果與討論 161
5-5-1 KP1&SP1高分子特性分析 161
5-5-2 高分子及磺酸化高分子1H NMR分析 162
5-5-3 KP1與SP1高分子之熱穩定性分析 166
5-5-4 IEC數值、吸水率、尺寸安定性及密度量測 167
5-5-5 質子導電度 171
5-5-6 TMA分析 173
5-5-7氧化與水解穩定性量測 173
5-5-8 TEM微相分離型態觀察 175
5-5-9 燃料電池元件效率 177
5-6結論 179
第六章. 甲醇可溶性固態高分子電解質應用於燃料電池觸媒層 180
6-1研究動機 180
6-2實驗方法 181
6-2-1單體合成流程圖 181
6-2-2 高分子合成流程圖 182
6-2-3磺酸化高分子流程圖 182
6-3高分子聚合 187
6-3-1 P4b聚合 187
6-3-2 P4c聚合 188
6-3-3高分子磺酸化 189
6-4結果與討論 191
6-4-1 單體、高分子結構鑑定與GPC分析 191
6-4-2 熱穩定性分析 192
6-4-3 吸水率 195
6-4-4 質子導電度 199
6-4-5 TEM微相分離型態觀察 201
6-4-6 燃料電池元件製作 203
6-5結論 218
6-6補充資料 219
第七章. 總結論 223
第八章. 未來工作 224
第九章. 參考文獻 226
參考文獻 References
[1] 燃料電池:新世紀能源林昇佃等著 滄海圖書
[2] 台灣燃料電池資訊網
[3] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, A review of polymer electrolyte membrane fuel cells:Technology, applications, and needs on fundamental research, Applied Energy, 2011, 88, 981-1007.
[4] (a) H.Y. Jung, K. Y. Cho, K. A. Sung, W. K. Kim, J. K. Park, The effect of sulfonated poly(ether ether ketone) as an electrode binder for direct methanol fuel cell (DMFC), J. Power Sources, 2006, 163 56; (b) H. Y. Jung, K. Y. Cho, K. A .Sung, W .K. Kim, M. Kurkuri, J. K. Park, Sulfonated poly(arylene ether sulfone) as an electrode binder for direct methanol fuel cell, Electrochim. Acta, 2007, 52, 4916-4921.
[5] T. J. Peckham, S. Holdcroft, Structure-Morphology-Property Relationships of Non-Perfl uorinated Proton-Conducting Membranes, Adv. Mater., 2010, 22, 4667-4690.
[6] K. Jiao, X. Li, Water transport in polymer electrolyte membrane fuel cells, Progress in Energy and Combustion Science, 2011, 37, 221-291.
[7] G. T. K. Acres, Frost, J. G. Hards, G. A. Potter, R. J. Ralph, T. R.Thompsett, D. Burstein, G. T. Hutchings, G. J., Electrocatalysts for Fuel Cells, Catalysis Today, 1997, 38, 393-400.
[8] A. J. Bard, L. R. Faulkner, "Electrochemical methods fundamentals and applications", John wiely & Sons., 2001.
[9] 萬其超 電化學; 商務印書局,1992.
[10] M. S. Wilson, S. Gottesfeld "Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cell Electrodes", J. Appl. Electrochem., 1992, 19, 1-7.
[11] M. D. Bernardi, M. W. Verbrugge, "A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell", J. Electrochem. Soc., 1992, 139, 2477-249.
[12] T. E. Springer, D. Raistrick, "Electrical Impedance of a Pore Wall for the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes", J. Electrochem. Soc., 1989, 136, 1594-1603.
[13] T. A. Zawodzinski, C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, S. Gottesfeld, "Water Uptake by and Transport through Nafion 117 Membrane", J. Electrochem. Soc., 1993, 140, 1041-1047.
[14] A. J. Bard, L. R.Faulkner, "Electrochemical methods fundamentals and applications", John wiely & Sons, Inc., 2001.
[15] 林昱志,質子交換膜型燃料電池阻抗之分析,國立成功大學化工系碩士論文,2001.
[16] P. G. Dirven, W. J.Engelen, d. p.Van, J-M, C., "An oxygen electrode for air-consuming proton exchange membrane fuel cells for transportation applications", J. Appl. Electrochem., 1995, 25, 122-125.
[17] A. P. Sunda and A. Venkatnathan, Molecular dynamics simulations of side chain pendants of perfluorosulfonic acid polymer electrolyte membranes, J. Mater. Chem. A, 2013, 1, 557-569.
[18] B. Smitha, S. Sridhar and A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications-a review, J. Membr. Sci., 2005, 259, 10-26.
[19] K. D. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci., 2001, 185, 29-39.
[20] R. Devanathan, Recent developments in proton exchange membranes for fuel cells, Energy Environ Sci., 2008, 1, 101-119.
[21] C. Y. Jung, C. S. Lee and S. C. Yi, Computational analysis of transport phenomena in proton exchange membrane for polymer electrolyte fuel cells, J. Membr. Sci., 2008, 309, 1-6.
[22] M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Alternating Polymer Systems for Proton Exchange Membranes, Chem. Rev., 2004, 104, 4587-4612.
[23] Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C, Chem. Mater. 2003, 15, 4896-4915.
[24] B. P. Tripathi, and V. K. Shahi, Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci., 2011, 36, 945-979.
[25] T. Higashihara, K. Matsumoto, M.Ueda, Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells, Polymer, 2009, 50, 5341–5357.
[26] M. Tanaka, M. Koike, K. Miyatake, M. Watanabe, Synthesis and properties of anion conductive ionomers containing fluorenyl groups for alkaline fuel cell applications, Polym. Chem., 2011, 2, 99-106.
[27] K. Miyatake, Y. Chikashige, E. Higuchi, M. Watanabe, ”Tuned Polymer Electrolyte Membranes Based on Aromatic Polyethers for Fuel Cell Applications”, American Chemical Society,2007,129,3879-3887.
[28] K. Miyatake, B. Bae, M. Watanabe, Fluorene-Containing Cardo Polymers as Ion Conductive Membranes for Fuel Cells, Polym. Chem., 2011, 2, 1919-1929.
[29] E. M. W. Tsang, Zhaobin Zhang, Ami C. C. Yang, Zhiqing Shi, Timothy J. Peckham, Rasoul Narimani, Barbara J. Frisken, and Steven Holdcroft, Nanostructure, Morphology, and Properties of Fluorous Copolymers Bearing Ionic Grafts, Macromolecules 2009, 42, 9467–9480
[30] Kenji Miyatake, Yohei Chikashige, and Masahiro Watanabe, Novel Sulfonated Poly(arylene ether): A Proton Conductive Polymer Electrolyte Designed for Fuel Cells, Macromolecules 2003, 36, 9691-9693
[31] B. C. Bae, K. Miyatake, M. Watanabe, ”Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications”, Journal of Membranes Science, 2008, 310, 110-118.
[32] S. Takamuku, P. Jannasch, Properties and degradation of hydrocarbon fuel cell membranes: a comparative study of sulfonated poly(arylene ether sulfone)s with different positions of the acid groups, Polymer Chemistry, 2012, 3,1202-1214.
[33] Y. Gao ,G. P. Robertson , M. D. Guiver , S. D. Mikhailenko , X. Li , S. Kaliaguine, Aromatic Poly(ether ketone)s with Pendant Sulfonic Acid Phenyl Groups for PEM, Macromolecules, 2007, 40, 1934-1944.
[34] K. Miyatake, K. Oyaizu, E. Tsuchida, A. S. Hay, Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers, Macromolecules,2001, 34, 2065-2071.
[35] T. Nakagawa, K. Nakabayashi, T. Higashihara, M. Ueda, A high performance polymer electrolyt membrane based on sulfonated poly(ether sulfone) with binaphthyl units, Journal of Materials Chemistry,2010, 20, 6662-6667.
[36] N. Li, D. S. Hwang, S. Y. Lee, Y. L. Liu, Y. M. Lee, M. D. Guiver, Densely Sulfophenylated Segmented Copoly(arylene ether sulfone) Proton Exchange Membranes, Macromolecules, 2011, 44, 4901-4910.
[37] K. M.iyatake, A. S. Hay, Synthesis and Properties of Poly(arylene ether)s Bearing Sulfonic Acid Groups on Pendant Phenyl Rings ,J. Polym. Sci. Part A: Polym. Chem., 2001, 39, 3211–3217.
[38] K. M.iyatake, K. Oyaizu, E Tsuchida, A. S. Hay, Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers, Macromolecules, 2001, 34, 2065-2071.
[39] S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, A. S. Hay, Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups: Novel Linear Aromatic Poly(sulfide-ketone)s ,Macromolecules 2008, 41, 277-280.
[40] S. Matsumura, A. R. Hlil, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, A. S. Hay, Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End Groups: Novel Branched Poly(ether-ketone)s Macromolecules, 2008, 41, 281-284.
[41] S Matsumura, A. R. Hlil, N. Du, C. Lepiller, J. Gaudet, D. Guay, Z. Shi, S. Holdcroft, A. S. Hay, Ionomers for Proton Exchange Membrane Fuel Cells with Sulfonic Acid Groups on the End-Groups: Novel Branched Poly(ether-ketone)s with 3,6-Ditrityl-9H-Carbazole End-Groups, J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 3860-3868.
[42] S Matsumura, A. R. Hlil, A. S. Hay, Synthesis, Properties, and Sulfonation of Novel Dendritic Multiblock Copoly(ether-sulfone) J Polym Sci, Part A: Polym Chem., 2008, 46, 6365-6375.
[43] S Matsumura, A. R. Hlil, M. A. K. Al-Souz, J. Gaudet, D. Guay, A. S. Hay, Ionomers for Proton Exchange Membrane Fuel Cells by Sulfonation of Novel Dendritic Multiblock Copoly(ether-sulfone)s J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 5461-5473.
[44] S. Tian, Y. Meng, A. S. Hay, Membranes from Poly(aryl ether)-Based Ionomers Containing Randomly Distributed Nanoclusters of 6 or 12 Sulfonic Acid Groups, Macromolecules, 2009, 42, 1153-1160.
[45] S. Tian, Y. Meng, A. S. Hay, Membranes from Poly(aryl ether)-Based Ionomers Containing Multiblock Segments of Randomly Distributed Nanoclusters of 18 Sulfonic Acid Groups, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 4762-4773.
[46] D. Chen, S. Wang, M. Xiao, Y. Meng A. S. Hay, Novel polyaromatic ionomers with large hydrophilic domain and long hydrophobic chain targeting at highly proton conductive and stable membranes, J. Mater. Chem., 2011, 21, 12068-12077.
[47] Kazuya M., Tomoya H., and Mitsuru U., Locally and Densely Sulfonated Poly(ether sulfone)s as Proton Exchange Membrane, Macromolecules, 2009, 42, 1161-1166.
[48] Kazuya M., Tomoya H., and Mitsuru U., Locally Sulfonated Poly(ether sulfone)s with HighlySulfonated Units as Proton Exchange Membrane, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 3444-3453.
[49] A. K. Mohanty, E. A. Mistri, A. Ghosh, S. Banerjee, Synthesis and characterization of novel fluorinated poly(arylene ether sulfone)s containing pendant sulfonic acid groups for proton exchange membrane materials, Journal of Membrane Science, 2012, 409-410, 145-155.
[50] C. H. Lee, C. H. Park, Y. M. Lee, Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC) applications, Journal of Membrane Science, 2008, 313, 199-206.
[51] C. Wang, D. W. Shin, S. Y. Lee, N. R. Kang, G. P. Robertson, Y. M. Lee and M. D. Guiver, A clustered sulfonated poly(ether sulfone) based on a new fluorene-based bisphenol monomer, 23. J. Mater. Chem., 2012, 22, 25093-25101.
[52] N. Li, S. Y. Lee, Y. L. Liu, Y. M. Lee and M. D. Guiver, A new class of highly-conducting polymer electrolyte membranes: Aromatic ABA triblock copolymers, Energy Environ. Sci., 2012, 5, 5346-5355.
[53] J. Pang, K. Shen, D. Ren, S. Feng, Y. Wang and Z. Jiang, Polymer electrolyte membranes based on poly(arylene ether)s with penta-sulfonated pendent groups, J. Mater. Chem. A, 2013, 1, 1465-1474.
[54] D. W. Seo, Y. D. Lim, S. H. Lee, Md. A. Hossain, Md. M. Islam, H. C. Lee, H. H. Jang, W. G. Kim, Preparation and characterization of block copolymers containing multi-sulfonated unit for proton exchange membrane fuel cell, Electrochimica Acta, 2012, 86, 352-359.
[55] B. Bae, K. Miyatake, M. Uchida, H. Uchida, Y. Sakiyama,T. Okanishi, and M. Watanabe, Sulfonated Poly(arylene ether sulfone ketone) Multiblock Copolymers with Highly Sulfonated Blocks. Long-Term Fuel Cell Operation and Post-Test Analyses, ACS Appl. Mater. Interfaces, 2011, 3, 2786-279.
[56] D. S. Kim, G. P. Robertson, M. D. Guiver, Comb-Shaped Poly(arylene ether sulfone)s as Proton Exchange Membranes, Macromolecules, 2008, 41, 2126-2134.
[57] N. Li, C. Wang, S. Y. Lee, C. H. Park, Y. M. Lee, M. D. Guiver, Enhancement of Proton Transport by Nanochannels in Comb-Shaped Copoly(arylene ether sulfone)s, Angew. Chem. Int. Ed., 2011, 50, 9158-9161.
[58] B. Lafitte and P. Jannasch, Proton-Conducting Aromatic Polymers Carrying Hypersulfonated Side Chains for Fuel Cell Applications, Adv. Funct. Mater., 2007, 17, 2823-2834.
[59] N. Asano, M. Aoki, S. Suzuki, K. Miyatake, H. Uchida, M. Watanabe Aliphatic/Aromatic Polyimide Ionomers as a Proton Conductive Membrane for Fuel Cell Applications, J. Am. Chem. Soc. 2006, 128, 1762-1769.
[60] K. Yamazaki and H. Kawakami, High Proton Conductive and Low Gas Permeable Sulfonated Graft Copolyimide Membrane, Macromolecules 2010, 43, 7185-7191.
[61] D. W. Seo, Y. D. Lim, S. H. Lee, Md. A. Hossain, Md. M. Islam, H. C. Lee, H. H. Jang, W. G. Kim, Preparation and characterization of block copolymers containing multi-sulfonated unit for proton exchange membrane fuel cell, Electrochimica Acta, 2012, 86, 352-359.
[62] http://ieknet.iek.org.tw/
[63] X. Zhao, M. Yin,. L. Ma, L. Liang, C. Liu, J. Liao, T. Lu, W Xing, Recent advances in catalysts for direct methanol fuel cells, Energy Environ. Sci., 2011, 4, 2736–2753.
[64] K. F. Medzihradszky, J. M. Campbell, M. A. Baldwin, A. M. Falick, P. Juhasz, M. L. Vestal, A. L. Burlingame, The Characteristics of Peptide Collision-Induced Dissociation Using a High-Performance MALDI-TOF/TOF Tandem Mass Spectrometer, Anal. Chem. 2000, 72, 552-558.
[65] http://www.knvs.tp.edu.tw/AFM/ch4.htm
[66] Y. S. Ye, Y. C. Yen, C. C. Cheng, W. Y. Chen, L. T. Tsai, F. C. Chang, Sulfonated poly(ether ether ketone) membranes crosslinked with sulfonic acid containing benzoxazine monomer as proton exchange membranes, Polymer, 2009, 50, 3196-3203.
[67] K. A. Mauritz, and R. B. Moore, State of Understanding of Nafion, Chem. Rev., 2004, 104, 4535-4585.
[68] J. J. Camberato, Cation Exchange Capacity - Everything You Want to Know and Much More.
[69] N. C. Foster, Ph. D., P. E., Sulfonation and Sulfation Processes, Chemithon, 1997.
[70] W. A. Thaler, Hydrocarbon-soluble sulfonating reagents. Sulfonation of aromatic polymers in hydrocarbon solution using soluble acyl sulfates, Macromolecules, 1983, 16, 623-628.
[71] Byungchan Bae, Kenji Miyatake, and Masahiro Watanabe, Synthesis and Properties of Sulfonated Block Copolymers Having Fluorenyl Groups for Fuel-Cell Applications, ACS Appl. Mater. Interfaces, 2009, 1, 1279–1286.
[72] Y. C. Yen, Y. S. Ye, C. C. Cheng, C. H. Lu, L. D. Tsai, J. M. Huang, F. C. Chang, The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane containing cross-linked proton exchange membrane, Polymer, 2010, 51, 84-91.
[73] A. Guinier and G. Fournet, Wiley Interscience, 1955, New York.
[74] B. Liu, G. P. Robertson, M. D. Guiver, Y. M. Sun, Y. L. Liu, J. Y. Lai, S. Mikhailenko, S. Kaliaguine, Sulfonated Poly(aryl ether ether ketone ketone)s Containing Fluorinated Moieties as Proton Exchange Membrane Materials, Journal of Polymer Science: Part B: Polymer Physics, 2006, 44, 2299-2310.
[75] A. K. Khandpur, S. Farster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, K. Mortensen, Macromolecules, 1995, 28, 8796-8806.
[76] Y. Chikashige, Y. Chikyu, K. Miyatake, M. Watanabe, Poly(arylene ether) Ionomers Containing Sulfofluorenyl Groups for Fuel Cell Applications, Macromolecules, 2005, 38, 7121-7126.
[77] B. Bae, K. Miyatake, M. Watanabe, Sulfonated Poly(arylene ether sulfone ketone) Multiblock Copolymers with Highly Sulfonated Block. Synthesis and Properties, Macromolecules 2010, 43, 2684–2691.
[78] C. H. Park, C. H. Lee, M. D. Guiver, Y. M. Lee, Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs), Progress in Polymer Science, 2011, 36, 1443-1498.
[79] Y. Lee and R. S. Porter, Macromolecules 1987, 20, 1336-1341.
[80] D. J. Blundell, polymer 1987, 28, 2248-2251.
[81] J. N. Coleman, W. J. Blau, A. B. Dalton, E. Muñoz, S. Collins, B. G. Kim, J. Razal, M. Selvidge, G. Vieiro and R. H. Baughman, Appl. Phys. Lett. 2003, 82, 1682-1684.
[82] S. Holdcroft, Fuel Cell Catalyst Layers: A Polymer Science Perspective, Chem. Mater., 2014, 26, 381-393.
[83] T. Soboleva, K. Malek, Z. Xie, T. Navessin, S. Holdcroft, PEMFC Catalyst Layers: The Role of Micropores and Mesopores on Water Sorption and Fuel Cell Activity, ACS Appl. Mater. Interfaces, 2011, 3, 1827-1837.
[84] 朱孟涵,磺酸化聚芳香醚高分子之合成及其在燃料電池質子交換膜上之應用國立中山大學光電工程學系研究所碩士論文(2012)。
[85] J. Peron, Z. Shi, S. Holdcroft, Hydrocarbon Proton Conducting Polymers for Fuel Cell Catalyst Layers, Energy Environ. Sci., 2011, 4, 1575-1591.
[86] P. Gode, F. Jaouen, G. Lindbergh, A. Lundblad, G. Sundholm, Influence of the composition on the structure and electrochemicalcharacteristics of the PEFC cathode, Electrochimica Acta, 48, 2003, 4175-4187.
[87] S. Sambandam and V. Ramani, Effect of IEC and loading of cathode SPEEK binder on kinetic and transport properties of all-SPEEK MEAs, ECS Transactions, 2007, 11, 105-116.
[88] K. A. Sung, H. Y. Jung, W. K. Kim, K. Y. Cho, J. K. Park, Influence of dispersion solvent for catalyst ink containing sulfonated poly(ether ether ketone) on cathode behaviour in a direct methanol fuel cell, J. Power Sources, 2007, 169, 271-275.
[89] C. Boyer, S. Gamburzev, O. Velev, S. Srinivasan, A. J. Appleby, Measurements of proton conductivity in the active layer of PEM fuel cell gas diffusion electrodes, Electrochim. Acta, 1998, 43, 3703-3709.
[90] A. Havranek, K. Wippermann, Determination of proton conductivity in anode catalyst layers of the direct methanol fuel cell (DMFC), J. Electroanal. Chem., 2004, 567, 305-315.
[91] D. A. G. Bruggeman, Calculations of various physical constants of heterogeneous substance:part I, dielectric constants and conductivity of isotropic substance, Ann. Phys, 1935, 24, 636-699.
[92] R. Fernández, P. Ferreira-Aparicio, L. Daza, PEMFC electrode preparation: Influence of the solvent composition and evaporation rate on the catalytic layer microstructure, J Power Sources, 2005, 151, 18-24.
[93] T. Omata, M. Tanaka, K. Miyatake, M. Uchida, H. Uchida, M. Watanabe, Preparation and Fuel Cell Performance of Catalyst Layers Using Sulfonated Polyimide Ionomers, ACS Appl Mater Interfaces, 2012, 4, 730-737.
[94] J.Peron, D. Edwards, A. Besson, Z. Shi, S. Holdcroft, Microstructure-Performance Relationships of sPEEK-Based Catalyst Layers, J. Electrochem. Soc., 2010, 157, B1230-B1236.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.128.199.210
論文開放下載的時間是 校外不公開

Your IP address is 3.128.199.210
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code