Responsive image
博碩士論文 etd-0009117-224340 詳細資訊
Title page for etd-0009117-224340
論文名稱
Title
以化學汽相沉積法控制氧化鋅薄膜生長方向於 (200)鋁酸鋰基板之研究
Control of Growth Orientation of ZnO Films on (200) γ-LiAlO2 Substrate by Chemical Vapor Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-12-15
繳交日期
Date of Submission
2017-01-10
關鍵字
Keywords
磊晶薄膜、化學汽相沉積法、鋁酸鋰、氧化鋅
LiAlO2, Chemical Vapor Deposition, epitaxy film, ZnO
統計
Statistics
本論文已被瀏覽 5651 次,被下載 85
The thesis/dissertation has been browsed 5651 times, has been downloaded 85 times.
中文摘要
本論文研究使用化學汽相沉積法(Chemical Vapor Deposition, CVD),磊晶成長(0002)及
(10-10)氧化鋅(Zinc Oxide, ZnO)於(200)鋁酸鋰(LiAlO2, LAO)基板,以乙醯丙酮鋅 Zinc 2,4
pentanedionate monohydrate [Zn(C5H7O2)2.H2O] 作為鋅的前驅物(Precursor),使用高純度氧氣
為反應氣體,氮氣為載流氣體。
試片以化學汽相沉積法生長完成後利用各式儀器檢測氧化鋅薄膜的生長情形。以掃描式電
子顯微鏡(Scanning Electron Microscope, SEM)觀察表面形貌、X 光繞射儀(X-Ray Diffraction,
XRD)鑑定晶體結構及晶體品質、原子力顯微鏡(Atomic Force Microscope, AFM)分析表面粗糙
度、光致螢光光譜儀(Photoluminescence Spectroscope, PL)量測光學性質、拉曼光譜儀(Raman
Spectroscope)觀測材料內部應力、穿透式電子顯微鏡(Transmission Electron Microscope, TEM)了
解晶向關係等。
實驗主要是以成長溫度、成長壓力、成長時間為操縱變因,進而觀察氧化鋅薄膜之生長變
化。在 550°C~650°C 時,C 面與 M 面氧化鋅共存,而溫度達 650°C 時 C 面訊號減弱,C 面氧
化鋅成長明顯受到抑制;在 650°C 改變生長壓力到 300torr 時得到純 M 面的氧化鋅磊晶薄膜,
說明 C 面氧化鋅成長亦受到壓力的影響;最後,隨著生長時間增加(60min、120min、180min),
則有越好的結晶品質。
值得一提的是,本論文中改進實驗方式,以磁鐵控制裝載前驅物的舟,藉由事前量測不同
生長溫度下前驅物能穩定揮發的位置,使氧化鋅磊晶薄膜的生長始末能夠被精準地控制,從而
得到優良的氧化鋅薄膜品質,表面粗糙度、光學性質及結晶品質(生長溫度 750°C、生長壓力
200torr、生長時間 180min時 rocking curve 之半高寬為 101 arcsec)皆有所提升。
Abstract
In this thesis, epitaxial (0002) and (10-10) ZnO films were grown by chemical vapor deposition
(CVD) method on LiAlO2 (LAO) (200) substrate. We used Zinc Acetylacetonate as our precursor. High
purity oxygen and nitrogen were used as reaction gas and carrier gas, respectively.
After CVD reaction was finished, we utilized scanning electron microscope, x-ray diffractometer,
atomic force microscope, photoluminescence spectroscope, raman spectroscope, transmission electron
microscope to analyze ZnO films’ characteristics such as surface topography, crystal structure, crystal
quality, surface roughness, optical properties, residual stress and crystal orientation.
We set growth temperature, growth pressure and growth time as independent variables in our
experiment. And then, observing the growth changes of ZnO films. When the growth temperature was
between 550°C and 650°C, c-ZnO and m-ZnO were coexisted. The XRD signal of c-ZnO was weaker
at 650°C, which showed the growth of c-ZnO was obviously restrained. At 650°C, we altered the
growth pressure to 300torr, and we got pure m-ZnO films It indicated that the growth of c-ZnO was
also restrained by pressure. Last, the more growth time, the better crystallinity.
It was worth to mention that the experiment was improved by using the magnet to control the
starting and ending position for the quartz boat precisely. The surface roughness, optical properties
and crystallinity(the growth at 750°C, 300torr, and 180min, we got 101 arcsec for the value of FWHM
of rocking curve) were enhanced.
目次 Table of Contents
研究生學位論文審定書 i
摘要 ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
第二章 文獻回顧與理論基礎 3
2.1 氧化鋅的結構與性質 3
2.1.1 氧化鋅磊晶薄膜的應用 5
2.2 化學汽相沉積法 6
2.3 異質磊晶成長 8
2.4 研究動機 10
第三章 實驗內容 11
3.1 實驗流程 11
3.2 實驗裝置 12
3.3 實驗方法與步驟 13
3.4 磁控舟設計與前驅物特性 15
3.5 量測設備簡介 16
第四章 實驗結果與討論 19
4.1 成長溫度對氧化鋅磊晶薄膜的影響 19
4.1.1 X 光繞射(XRD)分析 19
4.1.2 掃描式電子顯微鏡(SEM)表面形貌分析 26
4.2 成長壓力對氧化鋅磊晶薄膜的影響 30
4.2.1 X 光繞射(XRD)分析 31
4.2.2 掃描式電子顯微鏡(SEM)表面形貌分析 33
4.3 成長時間對氧化鋅磊晶薄膜的影響 36
4.3.1 X 光繞射(XRD)分析 36
4.3.2 掃描式電子顯微鏡(SEM)表面形貌分析 38
4.4 光致螢光光譜儀(PL)分析 40
4.5 拉曼光譜儀(Raman)分析 42
4.6 原子力顯微鏡(AFM)分析 44
4.7 穿透式電子顯微鏡(TEM)分析 45
第五章 結論 50
第六章 參考文獻 52
參考文獻 References
[1] R. Stevenson, IEEE spectrum, 8 (2009) 26.
[2] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Tao, S. Koyama, M. Y. Shen, T. Goto, Appl. Phys. Lett. 70 (1997) 2230.
[3] Bixia Lin and Zhuxi Fu, Yunbo Jia, Appl. Phys. Lett. 79 (2001) 943.
[4] A. Tsukazaki, A. Ohtomo, T. Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4 (2005) 42.
[5] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa. Solid State Commun, 103 (1997) 459.
[6] V. Srikant, D.R. Clarke, J. Appl. Phys. 83 (1998) 5447.
[7] L. Ge, X. Jing, J. Wang, J. Wang, S. Jamil, Q. Liu, F. Liu, M. Zhang, J. Mater. Chem. 21 (2011) 10750.
[8] H. M. Sun, L. M. Wang, D. Q. Chu, Z. C. Ma, A. X. Wang, Y. J. Zheng, L. X. Wang, Ceram. Int. 40 (2014) 16465.
[9 ] Y. H. Shi, M. Q. Wang, C. Hong, Z. Yang, J. P. Deng, X. H. Song, L. L. Wang, J. Y. Shao,
H. Z. Liu, Y. C. Ding, Sens. Actuators B: Chem. 177 (2013) 1027.
[10] M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, J. G. Park, Sens. Actuators B: Chem. 138 (2009) 168.
[11] M. Kadota, M. Minakata, Jpn. J. Appl. Phys. 37 (1998) 2923.
[12] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Resschikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys. 98 (2005) 041301.
[13] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog, Nature. 406 (2000) 865.

[14] M. M. C. Chou, D. R. Hang, H. Kalisch, R. H. Jansen, Y. Dikme, M. Heuken, G.P. Yablonskii, J. Appl. Phys. 101 (2007) 103106.
[15] G. Vaschenko, D. Patel, C. S. Menoni, N. F. Gardner, J. Sun, W. Götz, C. N. Tome’,
B. Clausen, Phys. Rev. B.,64 (2001) 241308.
[16] T. Makino, A. Ohtomo, C. H. Chia, Y. Segawa, H. Koinuma, M. Kawasaki, Physica E. 21 (2004) 671.
[17] J. Z. Perez, V. M. Sanjose, E. P. Lidon, J. Colchero, Phys. Rev. Lett. 95 (2005) 226105.
[18] O. Dulub, L.A. Boatner, U. Diebold, Surf. Sci. 519 (2002) 201.
[19] T. Koida, S.F. Chichibu, A. Uedono, T. Sota, A. Tsukazaki, M. Kawasaki, Appl. Phys. Lett. 84 (2004) 1079.
[20] J. Zuniga-Perez, V. Munoz-Sanjose, E. Palacios-Lidon, J. Colchero, Appl. Phys. Lett. 88 (2006) 261912.
[21] T. Moriyama, S. Fujita, Jpn. J. Appl. Phys. 44 (2005) 7919.
[22] H. Matsui, H. Tabata, Appl. Phys. Lett. 87 (2005) 143109.
[23] H. Matsui, H. Tabata, J. Appl. Phys. 99 (2006) 124307.
[24] Pearson’s Handbook of Crystallographic Data, Asm Intl, 4795.
[25] H. Karzel, W. Potzel, M. Köfferlein, W. Schiessl, M. Steiner, U. Hiller, K. Schwarz, Phys. Rev. B. 53 (1996) 11425.
[26] D. P. Norton, Y. W. Heo, M. P. Ivill, K. Ip, S. J. Pearton, M. F. Chisholm, T. Steiner, Mater. Today. 7 (2004) 34.
[27] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, X. G. Kong, J. Lumin. 99 (2002) 149.
[28] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, Appl. Phys. Lett. 68 (1996) 403.
[29] Q. X. Zhao, P. Klason, M. Willander, H. M. Zhong, W. Lu, J. H. Yang, Appl. Phys. Lett. 87 (2005) 211912.
[30] B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79 (2001) 943.
[31] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, B. E. Gnade, J. Appl. Phys. 79 (1996) 7983.
[32] Y. Chen, J. Appl. Phys. 84 (1998) 3912.
[33] P. H. Miller, Jr, Phys. Rev. 60 (1941) 890.
[34] D. C. Look, J. W. Hemsky, J. R. Sizelove, Phys. Rev. Lett. 82 (1999) 12.
[35] F. D. Auret, J. M. Nel, M. Hayes, L. Wu, W. Wesch, E. Wendler, Superlattices Microstruct. 39 (2006) 17.
[36] J. C. Simpson, J. F. Cordaro, J. Appl. Phys. 63 (1988) 5.
[37] S. A. M. Lima, F. A. Sigoli, M. Jafelicci Jr, M. R. Davolos, Int. J. Inorg. Mater. 3 (2001) 749.
[38] T. K. Gupta, J. Am. Ceram. Soc. 73 (1990) 1817.
[39] S. Lany, A. Zunger, Phys. Rev. B. 72 (2005) 035215.
[40] H. von Wenckstern, H. Schmidt, M. Grundmann, M. W. Allen, P. Miller, R. J. Reeves, S. M. Durbin, Appl. Phys. Lett. 91 (2007) 022913.
[41] G. H. Kassier, M. Hayes, F. D. Auret, M. Mamor, K. Bouziane, J. Appl. Phys. 102 (2007) 014903.
[42] A. L. Efros, J. Phys. Chem. Solids. 9 (1976) 2021.
[43] X. L. Guo, J. H. Choi, H. Tabata, T. Kawai. Jpn. J. Appl. Phys.,40 (2001) L177.
[44] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohyani, T. Makino. M. Sumiya., K. Ohani, S.F. Chichibu, S. Yusaburou, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nat. Mater. 4 (2005) 42.
[45] A. P. de Kroon, G. W. Schäfer, F. A., J. Alloy. Comp. 314 (2001) 147.
[46] H. O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition, William Andrew, (1999) 12.
[47] Y. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84 (1998) 71.
[48] S. Liu, S. Zhou, Y. Wang, X. Zhang, X. Li, C. Xia, Y. Hang, J. Xu, J. Cryst. Growth. 292 (2006) 125.
[49] M. Ohring, “The Materials Science of Thin Films,” 2nd edition, Academic Press, (2002).
[50] P. M. Martin, “Handbook of Deposition Technologies for Films and Coatings,” 3rd edition, Elsevier, (2010).
[51] 鐘曉儀,“以化學氣相沉積法成長(10-10)非極性氧化鋅薄膜於鋁酸鋰基板",國立中 山大學材料科學研究所碩士論文 (2007)。
[52] 張達欣,“利用化學氣相沉積法生長非極性之氧化鋅(10-10)薄膜在鋁酸鋰板上”,國立中山大學材料與光電科學學系碩士論文 (2008)。
[53] 黃鐙興,“磊晶於鋁酸鋰基板的氧化鋅薄膜成長機構研究與缺陷分析”,國立中山大
學材料與光電科學學系碩士論文 (2008)。
[54] K. A. Alim, V. A. Fonoberov, A. A. Balandin, Appl. Phys. Lett. 86 (2005) 053103.
[55] F. Decremps, J. Pellicer-Porres, A. M. Saitta, J. C. Chervin, A. Polian, Phys. Rev. B. 65 (2002) 092101.
[56] T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142 (1966) 570.
[57] S. S. Mitra, O. Brafman, W. B. Daniels, R. K. Crawford, Phys. Rev. 186 (1969) 942.
[58] S. Tripathy, S. J. Chua, P. Chen, Z. L. Miao, J. Appl. Phys. 92 (2002) 3503.
[59] Y. Huang, M. Liu, Z. Li, Y. Zeng, S. Liu, Mater. Sci. Eng. B. 97 (2003) 111.
[60] G. J. Exarhos, S. K. Sharma, Thin Solid Films 270 (1995) 27.
[61] X. Q. Wei, B. Y. Man, C. S. Xue, C. S. Chen, M. Liu, Jpn. J. Appl. Phys. 45 (2006) 8586.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code