Responsive image
博碩士論文 etd-0011117-174431 詳細資訊
Title page for etd-0011117-174431
論文名稱
Title
奈米拉伸界面測試分析薄膜之界面強度
Thin film interfacial strength characterization using nano-tension interface testing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
143
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-11
繳交日期
Date of Submission
2017-01-11
關鍵字
Keywords
金屬玻璃、附著力、界面強度、尺寸效應、奈米拉伸
metallic glasses, adhesion, interface strength, size effect, nano-tension
統計
Statistics
本論文已被瀏覽 5726 次,被下載 91
The thesis/dissertation has been browsed 5726 times, has been downloaded 91 times.
中文摘要
本研究將非晶構造的金屬玻璃薄膜以磁控濺鍍的方式鍍在矽基板或鋯金屬薄膜上,並且利用雙束型聚焦離子束設計一嶄新之奈米拉伸的界面測試來量測界面性質,藉由計算試片各部位的變形量,來確定此測試在量測過程中除待側拉伸區之外,其餘部分均維持在彈性變形區間。經由測試得知鋯銅金屬玻璃與陶瓷的矽基板之間的界面強度約為0.6 GPa且從SEM可觀察到試片是沿著界面水平破壞的;另一方面,在鋯銅金屬玻璃與金屬鋯的界面測試發現其界面強度明顯超過 1.7 GPa,因為試片並非破壞在界面,而是在鋯銅金屬玻璃的區域沿著45度破壞並穿過界面,此45度的破壞模式也跟金屬玻璃的破壞特徵相符,此強度跟之前所做的微米柱的壓縮測試結果相比,是非常符合的,因此可確定鋯銅鋯的金屬界面的附著力是比鋯銅金屬薄膜本身要來的強,造成金屬- 陶瓷界面強度遠低於金屬 金屬界面的原因是模量的不匹配及鍵結狀況不同所導致。

為了改善強度較弱的陶瓷 金屬界面(鋯銅矽試片),一層15奈米的鈦金屬薄膜被加進鋯銅與矽基板的中間,並且其界面強度增強至2 GPa,甚至高達2.8 GPa。再來利用高解析穿透式電子顯微鏡與X射線光與光電子能譜來分析鈦金屬層的強化機制,從X射線光與光電子能譜得知在界面附近的鈦金屬會在鍍膜過程中與矽基板的原生氧化層發生反應而形成氧化鈦;另外在鈦與鋯銅的界面則從高解析電子顯微鏡觀察到約3-5奈米的混合區域,此區域是在鍍膜過程中藉由擴散作用所造成。綜合以上討論,加入一層薄薄的鈦金屬可藉由形成擴散/合金界面而有效強化對矽與對鋯銅的附著力。

最後我們可利用韋伯分布來描述界面的尺寸效應,經由量測兩組不同尺寸的試片(ZCTS-500及ZCTS-300)可計算出韋伯模量(m)的數值約為1.7,在與其他研究團隊所做的不同界面測試之韋伯模量比較(m =7.7)可得知尺寸效應會嚴重影響界面測試的結果,而且測試的尺度越小影響則越大。在製作不同尺寸之試片的過程中,為了克服製程上的困難及得到一個平衡性較好的試片,我們發現試片尺寸為250奈米到300奈米見方的試片對我們的測試來說是最適合的尺寸。
Abstract
In this study, an amorphous ZrCu layer (thin film metallic glasses, TFMGs) was coated on different materials such as Si and Zr by sputter deposition and the fabricated into free-standing pull-off samples by focused ion beam (FIB). These samples were tested in tension in order to investigate the interface strength of ZrCu/Si (ZCS sample) and ZrCu/Zr (ZCZ sample) interfaces under tensile stress. After ensuring that the deformation of whole sample is in elastic region expect for tensile gages, the interface strength of ZCS to be ~0.6 ± 0.1 GPa by examining the fracture modes and load-displacement curves, with fracture occurring exactly along the ZCS interface. In contrast, the ZCZ samples failed within the ZrCu layer with shear band penetrating through interface. The ZCZ interface strength appeared to be higher than that of ZrCu (which is ~1.7 ± 0.1 GPa). This stress of tension results matched well with the micro-pillar compression results; the ZCS interface was consistently much lower than the ZCZ interface strength. It could be explained by modulus mismatch and different bonding states between ZrCu/Si and ZrCu/Zr interfaces.

Furthermore, in order to enhance the adhesion of metal-ceramic interface (ZCS interface), a 15 nm Ti layer was added between ZrCu/Si as adhesive layer. The interface strength is improved to a level over 2 GPa, even up to 2.8 GPa. The strengthening mechanism of Ti adhesive layer was examined by high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). The XPS results indicate that the Ti atoms reacted with SiO2 to form Ti oxides within interface region. In contrast, the ZrCu/Zr interface contains a 3-5 nm mixing region observed by HRTEM, presumably a result of diffusion during the sputtering process. Thus, the adhesion of ZCS samples can be enhanced by adding a Ti adhesive layer via diffusion/compound interfaces.

Finally, the sample size effect of interface strength can be described by the Weibull’s distribution. After calculating the results of ZCTS-500 and ZCTS-300 samples, the value of Weibull’s modulus (m) is 1.7 which is a reasonable value for interface in comparison with other interface tests (m = 7.7). The size effect appears to play an important role in interface tests. In order to overcome the difficulties of fabrication by FIB and maintain the balance of whole structure, the best sample dimensions of tensile gages are 250 nm to 300 nm.
目次 Table of Contents
論文審定書 i
謝誌 ii
中文摘要 iv
Abstract vi
Contents viii
List of figures xi
List of tables xv
Chapter 1 Introduction 1
1-1 Adhesion of thin films 1
1-2 Adhesion measurements 2
1-3 Motivation 3
Chapter 2 Background and literature review 6
2-1 Basic adhesion 6
2-2 Relationship between basic adhesion and practical adhesion 7
2-3 Classical adhesion theories 8
2-3.1 Mechanical theory 9
2-3.2 Wetting theory (physical adsorption) 10
2-3.3 Chemical bonding 11
2-3.4 Diffusion theory 12
2-4 Adhesion measurements 12
2-4.1 Peel testing 13
2-4.2 Blister testing 14
2-4.3 Direct pull off testing 14
2-4.4 Micro- or nano-interface testing prepared by FIB 15
2-5 Basic concepts of PVD process 16
2-5.1 Adsorption on solid surfaces 16
2-5.2 Nucleation of classical thermodynamics 17
2-5.3 Nucleation of mobile atoms in PVD process 19
2-5.4 Growth of as-sputtered thin films 20
2-5.3 Parameters of sputtering process 21
2-6 Types of interfaces in physical vapor deposition 22
2-6.1 Abrupt interface 22
2-6.2 Mechanical interlocking interface 23
2-6.3 Diffusion interface 23
2-6.4 Compound interface 25
2-7 Film properties affecting adhesion 26
2-7.1 Residual stress 26
2-7.2 Some properties of film can influence adhesion 27
2-7.3 Flaws 27
2-8 Bending model in mechanics of materials 28
2-9 Size effect of interface 29
Chapter 3 Experimental procedures 31
3-1 Targets of sputtering 31
3-2 Substrate preparation 32
3-3 Preparation of thin films 32
3-4 Property measurements and analyses of as-sputtered thin films 33
3-4.1 X-ray diffraction 33
3-4.2 SEM observation 33
3-5 Interface nano-tension test 34
3-5.1 Preparation for nano-tension samples 34
3-5.2 Nano-tension tests using nano-indentation system 35
3-6 Interface analyses 35
3-6.1 X-Ray photoelectron spectroscopy (XPS) 35
3-6.2 Interface structure analyses via high resolution transmission electron microscopy (HRTEM) 36
Chapter 4 Experimental results 38
4-1 Characterizations of ZrCu/Si and ZrCuZr/Si thin films 38
4-2 Fabrication of nano-interface test samples 39
4-3 Analyses of interface strength 41
4-4 Modeling calculation of ZCS and ZCZ samples by mechanics of materials 42
4-5 Interface strength of ZrCu/Ti/Si samples with different specimen sizes 46
4-6 Strengthening mechanisms of adhesive layer Ti 48
4-7 Size effect of interface 49
Chapter 5 Discussion 50
5-1 Interface strength of metal-ceramic and metal-metal systems 50
5-2 Interface test operated in elastic region 51
5-3 Strengthening mechanisms of adhesive layer Ti 53
5-4 Size effect and best sample size of nano-tension interface tests 55
Chapter 6 Conclusions 57
Chapter 7 Prospective and future work 59
References 60
Tables 65
Figures 68
參考文獻 References
[1] K.L. Mittal, ElectroComponent Science and Technology, 3 (1976) 21-42.
[2] H.S. Huang, H.J. Pei, Y.C. Chang, C.J. Lee, J.C. Huang, Thin Solid Films, 529 (2013) 177-180.
[3] C.J. Lee, C.H. Hsieh, H.S. Huang, J.C. Huang, Scripta Materialia, 69 (2013) 5-8.
[4] H.J. Pei, C.J. Lee, X.H. Du, Y.C. Chang, J.C. Huang, Materials Science and Engineering: A, 528 (2011) 7317-7322.
[5] K.L. Mittal, J Vac Sci Technol, 13 (1976) 19-25.
[6] V.G. Raevskii, The Journal of Adhesion, 5 (1973) 203-210.
[7] S. Wu, Polymer Interface and Adhesion, Taylor & Francis, 1982.
[8] J.J. Bikerman, Industrial & Engineering Chemistry, 59 (1967) 40-44.
[9] D. Taylor, J.E. Rutzler, Industrial & Engineering Chemistry, 50 (1958) 928-934.
[10] W. Brockmann, P.L. Geiß, J. Klingen, B. Schröder, Adhesive Bonding: Materials, Applications and Technology, Wiley-VCH, Federal Republic of Germany, 2009.
[11] L.P. Demajo, D.S. Rimai, L.H. Sharpe, Fundamentals of Adhesion and Interfaces, Taylor & Francis, London, 2000.
[12] E.M. Petrie, Plastics and adhesives as adhesives, in: C.A. Harper (Ed.) Handbook of plastics and elastomers. 4th, McGraw-Hill, New York, 2002.
[13] K.W. Allen, International Journal of Adhesion and Adhesives, 13 (1993) 67-72.
[14] T.G. Nieh, A.F. Jankowski, J. Koike, Journal of Materials Research, 16 (2001) 3238-3245.
[15] S. Chataigner, J.-F. Caron, K. Benzarti, M. Quiertant, C. Aubagnac, Construction and Building Materials, 25 (2011) 468-478.
[16] J.Y. Cognard, R. Créac'hcadec, J. Maurice, International Journal of Adhesion and Adhesives, 31 (2011) 715-724.
[17] X. Li, G. Chen, L. Wang, Y.H. Mei, X. Chen, G.Q. Lu, Materials Science and Engineering: A, 579 (2013) 108-113.
[18] V.B. Sitterle, W. Sun, M.E. Levenston, Journal of Biomechanics, 41 (2008) 3260-3264.
[19] M. Elhannani, K. Madani, E. Legrand, S. Touzain, X. Feaugas, Aerospace Science and Technology, (2016).
[20] J.J. Bikerman, Journal of Applied Physics, 28 (1957) 1484-1485.
[21] D.H. Kaelble, The Society of Rheology, 3 (1959) 161-180.
[22] D.H. Kaelble, The Society of Rheology, 4 (1960) 45-73.
[23] D.H. Kaelble, C.L. Ho, The Society of Rheology, 18 (1974) 219-235.
[24] Y. Zhang, D.W. Hazelton, A.R. Knoll, J.M. Duval, P. Brownsey, S. Repnoy, S. Soloveichik, A. Sundaram, R.B. McClure, G. Majkic, V. Selvamanickam, Physica C: Superconductivity, 473 (2012) 41-47.
[25] J. Pelfrene, S. Van Dam, W. Van Paepegem, International Journal of Adhesion and Adhesives, 62 (2015) 146-153.
[26] M. Nase, M. Rennert, K. Naumenko, V.A. Eremeyev, Journal of the Mechanics and Physics of Solids, 91 (2016) 40-55.
[27] U. Eitner, L.C. Rendler, Energy Procedia, 55 (2014) 331-335.
[28] M. Horgnies, E. Darque-Ceretti, H. Fezai, E. Felder, International Journal of Adhesion and Adhesives, 31 (2011) 238-247.
[29] M.D. Thouless, Q.D. Yang, International Journal of Adhesion and Adhesives, 28 (2008) 176-184.
[30] Z. Cao, L. Tao, D. Akinwande, R. Huang, K.M. Liechti, International Journal of Solids and Structures, 84 (2016) 147-159.
[31] J.Y. Sun, S.H. Qian, Y.M. Li, X.T. He, Z.L. Zheng, Measurement, 46 (2013) 2278-2287.
[32] R. Posner, G. Giza, R. Vlasak, G. Grundmeier, Electrochimica Acta, 54 (2009) 4837-4843.
[33] Z. Cao, P. Wang, W. Gao, L. Tao, J.W. Suk, R.S. Ruoff, D. Akinwande, R. Huang, K.M. Liechti, Carbon, 69 (2014) 390-400.
[34] J.M. Linden, G. Kotsikos, A.G. Gibson, Composites Part A: Applied Science and Manufacturing, 81 (2016) 129-138.
[35] H. Dannenberg, Journal of Applied Polymer Science, 5 (1961) 125-134.
[36] Z.H. Wang, Z.S. Ma, Y.C. Zhou, C.S. Lu, Progress in Natural Science-Materials International, 23 (2013) 453-458.
[37] L. Jiang, Y. Zhou, Y. Liao, C. Sun, Materials Science and Engineering: A, 487 (2008) 228-234.
[38] N.M.M. Ramos, M.L. Simões, J.M.P.Q. Delgado, V.P. de Freitas, Construction and Building Materials, 31 (2012) 86-93.
[39] N. Zheng, Y. Huang, W. Sun, X. Du, H.Y. Liu, S. Moody, J. Gao, Y.W. Mai, Carbon, 110 (2016) 69-78.
[40] M. Lee, C.H. Wang, E. Yeo, International Journal of Adhesion and Adhesives, 44 (2013) 259-268.
[41] E. Bonaldo, J.A.O. Barros, P.B. Lourenço, International Journal of Adhesion and Adhesives, 25 (2005) 463-474.
[42] J. Xie, Z. Chen, L. Pang, S. Wu, Construction and Building Materials, 57 (2014) 61-68.
[43] J. Valli, Journal of Vacuum Science & Technology A, 4 (1986) 3007-3014.
[44] J.J. Roa, R. Rodríguez, V. Lamelas, R. Martínez, E. Jiménez-Piqué, L. Llanes, Surface and Coatings Technology, 308 (2016) 414-417.
[45] M.B. Ward, D. Kapitulčinová, A.P. Brown, P.J. Heard, D. Cherns, C.S. Cockell, K.R. Hallam, K.V. Ragnarsdóttir, Micron, 47 (2013) 10-17.
[46] C.T. Chen, K. Koiwa, N. Shishido, S. Kamiya, M. Omiya, H. Sato, M. Nishida, T. Suzuki, T. Nakamura, T. Nokuo, T. Nagasawa, Engineering Fracture Mechanics, 131 (2014) 371-381.
[47] M.C. Liu, J.C. Huang, Y.T. Fong, S.P. Ju, X.H. Du, H.J. Pei, T.G. Nieh, Acta Materialia, 61 (2013) 3304-3313.
[48] M. Konuma, Film Deposition by Plasma Techniques, Springer Berlin Heidelberg, 2012.
[49] J.M. Gere, B.J. Goodno, Mechanics of Materials, Cengage Learning, 2012.
[50] D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Elsevier Science, 2014.
[51] M. Copel, M.C. Reuter, E. Kaxiras, R.M. Tromp, Physical Review Letters, 63 (1989) 632-635.
[52] K.B. Sundaram, A. Khan, Thin Solid Films, 295 (1997) 87-91.
[53] C. Wang, P. Brault, C. Zaepffel, J. Thiault, A. Pineau, T. Sauvage, Journal of Physics D: Applied Physics, 36 (2003) 2709-2713.
[54] R. Wuhrer, W.Y. Yeung, Scripta Materialia, 49 (2003) 199-205.
[55] J.M. Poate, K. Tu, J.W. Mayer, Thin films: interdiffusion and reactions, Wiley, 1978.
[56] D.H. Buckley, Surface effects in adhesion, friction, wear, and lubrication, Elsevier Science, 1981.
[57] M.A. Nicolet, Thin Solid Films, 52 (1978) 415-443.
[58] E.J. Kudrak, E. Miller, Palladium-nickel as a corrosion barrier on PV coated home and marine hardware and personal accessory items, Society of Vacuum Coaters 39th Annual Technical Conference Proceedings: May 5-10, 1996, Philadelphia, PA, The Society, 1996.
[59] L.J. Brillson, Contacts to semiconductors: fundamentals and technology, Noyes, 1993.
[60] Y.C. Huang, S.Y. Chang, C.H. Chang, Thin Solid Films, 517 (2009) 4857-4861.
[61] K.E. Pappacena, D. Singh, O.O. Ajayi, J.L. Routbort, O.L. Erilymaz, N.G. Demas, G. Chen, Wear, 278–279 (2012) 62-70.
[62] A. Moridi, H. Ruan, L.C. Zhang, M. Liu, International Journal of Solids and Structures, 50 (2013) 3562-3569.
[63] M.D. Thouless, H.M. Jensen, The effect of residual stresses on adhesion measurement, in: K.L. Mittal (Ed.) Adhesion Measurement of Films and Coatings, Taylor & Francis, 1995.
[64] E.O. Hall, Proceedings of the Physical Society. Section B, 64 (1951) 742.
[65] N.J. Petch, Journal of the Iron and Steel Institute., 174 (1953) 25-28.
[66] H. Gleiter, Progress in Materials Science, 33 (1989) 223-315.
[67] T.G. Nieh, J.G. Wang, Intermetallics, 13 (2005) 377-385.
[68] W.D. Nix, Metallurgical Transactions A, 20 (1989) 2217-2245.
[69] M. Atkinson, Journal of Materials Research, 10 (1995) 2908-2915.
[70] Q. Ma, D.R. Clarke, Journal of Materials Research, 10 (1995) 853-863.
[71] K.W. McElhaney, J.J. Vlassak, W.D. Nix, Journal of Materials Research, 13 (1998) 1300-1306.
[72] S.Y. Kuan, J.C. Huang, Y.H. Chen, C.H. Chang, C.H. Hsieh, J.H. Wang, Y.C. Nian, S.P. Ju, T.G. Nieh, S.H. Chen, Y.M. Hwang, Materials Science and Engineering: A, 646 (2015) 135-144.
[73] E.C.G. Kirk, D.A. Williams, H. Ahmed, Institute of Physics Conference Series, (1989) 501-506.
[74] R.M. Langford, A.K. Petford-Long, Journal of Vacuum Science & Technology A, 19 (2001) 2186-2193.
[75] R.M. Langford, A.K. Petford-Long, Journal of Vacuum Science & Technology A, 19 (2001) 982-985.
[76] C.J. Chen, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, Taiwan, 2007.
[77] C. Motz, T. Schoberl, R. Pippan, Acta Materialia, 53 (2005) 4269-4279.
[78] D. Kiener, C. Motz, M. Rester, M. Jenko, G. Dehm, Materials Science and Engineering: A, 459 (2007) 262-272.
[79] W. Sigle, G. Richter, M. Ruhle, S. Schmidt, Applied Physics Letters, 89 (2006).
[80] Y.H. Lai, C.J. Lee, Y.T. Cheng, H.S. Chou, H.M. Chen, X.H. Du, C.I. Chang, J.C. Huang, S.R. Jian, J.S.C. Jang, T.G. Nieh, Scripta Materialia, 58 (2008) 890-893.
[81] J.M. Gere, Mechanics of Materials, Thomson, 2007.
[82] J.F. Moulder, J. Chastain, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics, 1995.
[83] C.J. Lee, J.C. Huang, T.G. Nieh, Applied Physics Letters, 91 (2007) 161913.
[84] J.C. Ye, J. Lu, Y. Yang, P.K. Liaw, Acta Materialia, 57 (2009) 6037-6046.
[85] J.W. Qiao, H.L. Jia, Y. Zhang, P.K. Law, L.F. Li, Materials Chemistry and Physics, 136 (2012) 75-79.
[86] D.C. Jang, J.R. Greer, Nat Mater, 9 (2010) 215-219.
[87] L. Tian, Z.W. Shan, E. Ma, Acta Materialia, 61 (2013) 4823-4830.
[88] M.C. Liu, X.H. Du, I.C. Lin, H.J. Pei, J.C. Huang, Intermetallics, 30 (2012) 30-34.
[89] H.J. Pei, S.Y. Kuan, M.C. Liu, J.C. Huang, Intermetallics, 31 (2012) 191-195.
[90] K.E. Petersen, P Ieee, 70 (1982) 420-457.
[91] L. Xie, P. Brault, A.L. Thomann, L. Bedra, Applied Surface Science, 274 (2013) 164-170.
[92] M.A. Hopcroft, W.D. Nix, T.W. Kenny, Journal of Microelectromechanical Systems, 19 (2010) 229-238.
[93] H.J.T. Ellingham, Journal of the Society of Chemical Industry, 63 (1944) 125-160.
[94] A. Takeuchi, A. Inoue, Materials Transactions, 46 (2005) 2817-2829.
[95] B.H. Wu, S. Chen, J. Wu, Y.X. Leng, D. Xie, F. Jiang, N. Huang, H. Sun, Surface and Coatings Technology, 277 (2015) 197-202.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code