Responsive image
博碩士論文 etd-0011118-180404 詳細資訊
Title page for etd-0011118-180404
論文名稱
Title
運用串聯直調雷射及電致吸收調變器實現強度調變直接偵測無載波幅相調變單邊帶長距離傳輸
IM/DD Single-Sideband CAP Long Distance Transmission Using Cascaded DML/EAM
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-01-09
繳交日期
Date of Submission
2018-01-16
關鍵字
Keywords
強度調變與直接偵測、功率衰減、電致吸收調變器、直接調變雷射、單邊帶訊號、無載波幅相調變
IM/DD, RF power fading, EAM, DML, CAP, single sideband
統計
Statistics
本論文已被瀏覽 5709 次,被下載 531
The thesis/dissertation has been browsed 5709 times, has been downloaded 531 times.
中文摘要
為了達到高容量長距離傳輸並且保持峰均功率比 (Peak-to-Average Power Ratio, PAPR)較低的情況下,我們使用具備較高頻譜使用效率並且峰均功率較低的無載波幅相調變 (Carrier-Less Amplitude-Phase Modulation, CAP)訊號。在為了達到傳輸系統低成本的需求下使用了強度調變直接偵測 (Intensity Modulation / Direct Detection, IM / DD)系統。然而,不管是以直接調變DFB雷射 (Direct Modulated DFB Laser, DML)或是電致吸收調變雷射 (Electro-Absorption Modulated Laser, EML)為主的系統傳輸訊號皆為雙邊帶訊號 (Double Sideband Signal),而雙邊帶訊號在經過長距離傳輸後會有功率衰減 (Power Fading)的問題存在,我們使用光學單邊帶訊號來解決此問題。
相較於本實驗室曾經提出的使用正交分頻多工訊號 (Orthogonal Frequency Division Multiplexing, OFDM)單邊帶,本篇論文中我們提出了一個無載波幅相調變單邊帶調變方法,在同樣使用串聯直接調變DFB雷射與電致吸收調變器 (Electro-Absorption Modulator, EAM)產生單邊帶訊號下,不但能夠解決功率衰減的問題,還有峰均功率比較低的優勢。在傳輸250 km後,不需經過二階伏爾泰拉濾波器解調前,傳輸速度就能達到12 Gbps,在經過二階伏爾泰拉濾波器解調後傳輸速度便能上升至16 Gbps。
Abstract
To achieve high-capacity cost-effective transmission and keep lower PAPR, this work used spectrally efficient Carrier-Less Amplitude Phase Modulation (CAP) signals in an Intensity Modulation / Direct Detection (IM/DD) system. However, either based on Direct Modulated DFB Laser (DML) or Electro-Absorption Modulated Laser (EML), the generated optical signals are intrinsically double sideband, and that would cause power fading after dispersive transmission. In this work , we proposed optical single-sideband CAP modulation to combat with power fading in an IM/DD long-reach transmission system.
The single-sideband CAP modulation was realized in this work by a cascaded DML/EAM. Using single-sideband CAP not only can achieve power fading free but also has the lower PAPR, as compared with single-sideband OFDM signals. This work can achieve bit rates of 12 and 16 Gbps after transmission over 250 km without and being compensating by second-order Volterra Filter, respectively.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 vii
第一章 緒論 1
1-1前言 1
1-2研究動機 2
第二章 強度調變直接偵測系統 4
2-1正交分頻多工 4
2-1-1正交分頻多工簡介 4
2-1-2 正交分頻多工之原理 4
2-1-3 正交分頻多工的優缺點 5
2-2 無載波幅相調變 8
2-2-1 無載波幅相調變簡介 8
2-2-2 無載波幅相調變之原理 8
2-2-3 無載波幅相調變的優缺點 9
2-2-4 前饋式等化器 10
2-2-5 決策反饋式等化器 11
2-2-6 伏爾泰拉濾波器 12
2-3 強度調變直接偵測 13
2-3-1 強度調變直接偵測簡介 13
2-3-2 電致吸收調變器 14
2-3-3 直接調變DFB雷射 15
2-4 光纖傳輸系統 17
2-4-1 光纖傳輸系統簡介 17
2-4-2 色散 18
2-4-3 啁啾 19
2-4-4 功率衰減 19
第三章 單邊帶訊號 22
3-1單邊帶訊號原理 22
3-2單邊帶訊號調變 23
第四章 實驗架構與結果 26
4-1實驗架構 26
4-1-1實驗設備 26
4-1-2單邊帶調變 28
4-2實驗結果與討論 29
4-2-1無載波幅相調變單邊帶滾降係數 29
4-2-2無載波幅相調變單邊帶與雙邊帶比較 33
4-2-3相位噪聲對單邊帶系統的影響 43
4-2-4無載波幅相調變與正交分頻多工單邊帶比較 44
4-2-5單邊帶數位濾波器長度比較 45
第五章 結論 48
參考文獻 49
參考文獻 References
[1] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper(2017). (https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html)
[2] Koonen, T. (2006). “Fiber to the home/fiber to the premises: what, where, and when?” Proceedings of the IEEE, 94(5), 911-934.
[3] Wei, C. C. (2011). “Small-signal analysis of OOFDM signal transmission with directly modulated laser and direct detection.” Optics letters, 36(2), 151-153.
[4] Wei, C. C. (2012)” Analysis and iterative equalization of transient and adiabatic chirp effects in DML-based OFDM transmission systems” Optics express, 20 (23), 25774-25789.
[5] Armstrong, J. (2009). “OFDM for optical communications”. Journal of Lightwave Technology, 27(3), 189-204.
[6] Cheng, H. L., Chen, W. H., Wei, C. C., and Chiu, Y. J. (2015)
” Optical single-sideband OFDM transmission based on a two-segment EAM” Optics express, 23(2), 982-990.
[7] Wang, Y. H., Wei, C. C., Taga H., and Tsuritani T. (2016) “Novel IM/DD Single-Sideband OFDM Generation Featuring Tolerance to Dispersion-Related Fading and Distortion” In 2016 The European Conference on Optical Communication (ECOC)
[8] Werner, J. J. (1992), “Tutorial on Carrierless AM/PM - Part 1 - Fundamentals and digital CAP transmitter,” Document for ANSI X3T9.5 TP/PMD, St. Petersburg Beach.
[9] Werner, J. J. (1993), “Tutorial on Carrierless AM/PM - Part 2 - Performance of bandwidth-efficient line codes,” Document for ANSI X3T9.5 TP/PMD, Austin.
[10] Chen, K. C. (2015), “Application of Carrier-Less Amplitude-Phase Modulation in Short-Reach Optical Interconnection and Long-Reach PONs Supplemented by Digital Signal Processing, Department of Photonics National Sun Yat-sen University Master Thesis.”
[11] Chen, H. Y., Wei, C. C., Chu, H. H., Chen, Y. C., Lu, I. C. and Chen, J. H. (2014, September). “An EAM-based 50-Gbps 60-km OFDM system with 29-dB loss budget enabled by SSII cancellation or Volterra filter.” In 2014 The European Conference on Optical Communication (ECOC)
[12] Chang R. W. (1966). “Synthesis of Band‐Limited Orthogonal Signals for Multichannel Data Transmission.” Bell System Technical Journal, 45(10), 1775-1796.
[13] Weinstein, S. B. & Ebert, P. M. (1971). “Data transmission by frequency-division multiplexing using the discrete Fourier transform.” IEEE transactions on communication technology, 19(5), 628-634.
[14] Weinstein, S. B. & Ebert, P. M. (1971). “Data transmission by frequency-division multiplexing using the discrete Fourier transform.” IEEE transactions on communication technology, 19(5), 628-634.
[15] Shalash, A. F., & Parhi, K. K. (1999) “Multidimensional carrierless AM/PM systems for digital subscriber loops,” IEEE Transactions on Communications, vol. 47, pp. 1655-1667.
[16] Diniz P. Adaptive Filtering 3ed.(2008) Springer.
[17] Keldysh, L. V. (1958). “Behavior of non-metallic crystals in strong electric fields.” Soviet Journal of Experimental and Theoretical Physics, 6, 763.
[18] Wedding, B. (1994). “Analysis of fibre transfer function and determination of receiver frequency response for dispersion supported transmission.” Electronics letters, 30(1), 58-59.

[19] Wei, C. C., Cheng H. L., Chen H. Y., Chen Y. C., Chu H. H., Chang K. C., Lu I. C.,and Chen J. H. (2015)“Analysis of Nonlinear Distortion and SSII Cancellation in EAM-Based IMDD OFDM Transmission” Journal of Lightwave Technology.33(14). 3069 – 3082
[20] Smith, G. H., Novak, D. & Ahmed, Z. (1997). “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators.” IEEE transactions on microwave theory and techniques, 45(8), 1410-1415.
[21] Wang, Y. H. (2016)” IM/DD Single-Sideband OFDM Long-Distance Transmission Using Cascaded DML/EAM, Department of Photonics National Sun Yat-sen University Master Thesis.”
[22] Chaibi, M. E., Anfray, T., Kechaou, K., Gosset, C., Neto, L. A., Aubin, G., Kazmierski, C.,Chanclou, P.,, Christelle, A.-B. & Erasme, D. (2013). “Dispersion compensation-free IM/DD SSB-OFDM transmission at 11.11 Gb/s over 200 km SSMF using dual EML.” IEEE Photonics Technology Letters, 25(23), 2271-2273.
[23] Marshall, W. K., Crosignani, B., & Yariv, A. (2000). “Laser phase noise to intensity noise conversion by lowest-order group-velocity dispersion in optical fiber: exact theory.” Optics letters, 25(3), 165-167.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code