Responsive image
博碩士論文 etd-0012115-201158 詳細資訊
Title page for etd-0012115-201158
論文名稱
Title
操作於5 GHz頻段之差動對低雜訊放大器及壓控振盪器之設計
Design of Low Noise Amplifier and Voltage Controller Oscillator at 5 GHz Band
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-12-24
繳交日期
Date of Submission
2015-01-12
關鍵字
Keywords
差動對、低雜訊放大器、CMRR、壓控振盪器
Low Noise Amplifier(LNA), Common-Mode Rejection Ratio (CMRR), Voltage Controlled Oscillator(VCO), differential pair
統計
Statistics
本論文已被瀏覽 5744 次,被下載 235
The thesis/dissertation has been browsed 5744 times, has been downloaded 235 times.
中文摘要
本論文主要可分為兩個部分。第一部分(第二章),我們利用交叉電容耦合對、電感退化及T形諧振電路技術設計本章差動對低雜訊放大器。利用外加T形諧振電路在不增加功率消耗的情況下,提升功率增益及CMRR特性。第一次晶片下線結果,整體晶片面積為0.94 mm*0.914 mm = 0.86 mm2。在操作頻率設計在5.8 GHz下,功率增益為1.76 dB,S11為-22.3 dB,S22為-1.73 dB,在線性度的表現上,IIP3為-9 dBm,IP1dB為-13.2 dBm。第二次晶片下線結果,整體晶片面積為0.94 mm * 0.914 mm = 0.86 mm2。在操作頻率設計在5.8 GHz下,功率增益為7.05dB,雜訊指數為3.54 dB,S11為-40.049 dB,S22為-2.031 dB,在線性度的表現上,IIP3為-8.3 dBm,IP1dB為-13.2 dBm。第二部分(第三章),我們利用交叉耦合對、LC Tank以及尾端LC Tank來設計運用在5 GHz頻段之低功耗壓控振盪器。此壓控振盪器量測結果,在5.2 GHz相位雜訊在距離輸出振盪頻率1 MHz處為-113.8 dBc/Hz,整體協調範圍達20.3%的頻寬(5.185~6.35 GHz),整體晶片面積為0.684 mm2,壓控振盪器消耗功率為3.96 mW,而晶片特性則可達到-188.3 dBc/Hz。第四章為總結及未來工作。
Abstract
This thesis includes two major parts. The first part (in Chapter II), we used cross coupled capacitor, inductive degeneration, and a T-shaped resonant circuit to design a low voltage differential Low Noise Amplifier. In order to enhance the gain and CMRR without increasing additional power on the circuits, the T-shaped resonant circuit plays an important role. The first results of the chip were designed at 5.8 GHz and the chip size was 0.94 mm*0.914 mm = 0.86 mm2. The power gain was 1.76 dB. The S11 was -22.3 dB and the S22 was -1.73 dB. The IIP3 was -9 dBm and IP1dB was -13.2 dBm. The second results of chip were designed at 5.8 GHz and the same frequency band, and the chip size is the same, too. The power gain was 7.05 dB and the NF was 3.54 dB. The S11 was -40.05 dB and the S22 was -2.031 dB. The IIP3 was -8.3 dBm and IP1dB was -17.3 dBm. The second part (in Chapter III), we used cross-coupled, LC Tank, and tail LC Tank to design 5 GHz band low power consumption Voltage Controlled Oscillator(VCO). The VCO can achieve a phase noise of -113.8 dBc/Hz at 5.2 GHz @1 MHz offset across the whole frequency range. Wide tuning range VCO of 20.3% (5.185~6.35 GHz) suitable for tuner application, was obtained. The chip area was 0.684 mm2, and power consumption was 3.96 mW. This VCO work achieves an FOM of -188.3 dBc/Hz. In Chapter IV, the conclusions and future work was described.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vi
圖表目錄 viii
第一章 導論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 論文組織 3
第二章 5.8GHz高增益低功耗高抑制共模增益之低雜訊放大器 4
2.1 低雜訊放大器概述 4
2.2 重要參數與MOSFET元件雜訊 5
2.2.1 雜訊指數 5
2.2.2 元件雜訊 7
2.2.3 線性度 10
2.2.4 動態範圍 12
2.2.5 穩定度 12
2.3 常用於低雜訊放大器架構 15
2.3.1 輸入阻抗匹配架構 15
2.3.2低功率消耗架構 19
2.4 電路設計 21
2.4.1 增益提升設計 22
2.4.2 提升共模雜訊抑制之設計 24
2.5 量測結果與結論分析 25
2.5.1 第一次下線晶片 25
2.5.2 第二次下線晶片 30
2.6 結語 35
第三章 寬頻低功耗壓控振盪器 38
3.1 壓控振盪器概述 38
3.1.1 振盪原理 39
3.1.2 振盪器架構 40
3.2 VCO之重要參數 43
3.2.1 相位雜訊 43
3.2.2 相位雜訊對通訊系統的影響 49
3.2.3 偏壓點設計 50
3.2.4 振盪器Q值 51
3.2.5 調諧範圍 52
3.2.6 輸出緩衝器 53
3.3 常用之壓控振盪器架構 54
3.3.1 主動埠架構 54
3.3.2 改善相位雜訊之技術 56
3.3.3 提升調諧範圍之技術 58
3.4 壓控振盪器設計 60
3.5 模擬與量測結果比較 61
3.6 結語 66
第四章 結論 67
參考文獻 69
參考文獻 References
參考文獻
[1] D. M. Pozar, Microwave and RF Design of Wireless Systems, Norwood, MA: John Wiley & Sons, Inc., 2001.
[2] J. I. Brown, “Differential Amplifiers That Reject Common-Mode Currents,” IEEE J. of Solid-state Circuits, Vol. SC-6, No. 6, pp.
385-391, December 1971
[3] E. A. M. Klumperink, S. L. J. Gierkink, A. P. van de Wel, and B. Nauta, “ Reducing MOSFET 1/f noise and power
comsumption by switched biasing ,”IEEE J.Solid-State Circuits, vol. 35, no. 7, pp. 994-1001, Jul. 2000.
[4] R. M. Weng and P. C. Lin,“A 1.5-V Low-Power Common-Gate Low Noise Amplifier for Ultra-wideband Receivers ,”in Proc. IEEE
Int. Circuits Syst.Symp., May 27-30, 2007, pp. 2618-2621.
[5] D. Allstot, X. Li, and S. Shekhar, “Design considerations for CMOS low-noise amplifiers,” in IEEE Radio Freq. Integr. Circuit
Symp. Dig., Jun. 2004, pp. 97–100.
[6] J. Radic, A. Djugova, and M. V. Misic,“A 2.4 GHz High Gain Low Noise Amplifier ,” ISSCS 2009, pp.1-4.
[7] Evgeniy V. Balashov, and Alexander S. Korotkov, “Ultra Wideband Low Noise Amplifier with Source Degeneration and Shunt
series Fedback,”in Proc. European Conference on Circuits and System for Communication, pp. 87-92, July 2008.
[8] Y. Lu, R. Krithivasan, W. M. L. Kuo, and J. D. Cressler, “A 1.8–3.1dB noise figure (3–10 GHz) SiGe HBT LNA for UWB
applications,”in IEEE Radio Freq. Integrated Circuits Symp., Jun. 2006, pp. 45–48.
[9] W. T. Cheung et al. “Optimized RF CMOS Low Noise Amplifier Design Via Geometric Programming,” International Symposium on
Intelligent Signal Processing and Communications (ISPACS), 2006.
[10] D. Wu, R. Huang, W. Wong, and Y. Wang, “A 0.4-V low noise amplifier using forward body bias technology for 5 GHz
application,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 543–545, Jul. 2007.
[11] C. M. Li, M. T. Li, K. C. He, and J. H. Tarng,“A Low-Power Self-Forward Body Bias CMOS LNA for 3–6.5-GHz UWB
Receivers,”IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 100-102, Fed. 2010.
[12] Y. S. Wang and L. H. Lu, “5.7-GHz low-power variable gain LNA in 0.18-m CMOS,” Electron. Lett., vol. 41, no. 2, Jan. 2005.
[13] C. P. Chang, J. H. Chen, and Y. H. Wang, “A fully integrated 5 GHz low-voltage LNA using forward body bias technology,” IEEE
Microw. Wireless Compon. Lett., vol. 19, no. 3, pp. 176–178, Mar. 2009.
[14] W. Zhou, S. Shekhar, S. Embabi, J. P. de Gyvez, D. Allstot, and E. Sanchez – Sinencio, “A capacitor cross-coupled common-
gate low noise amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 875–879, Dec. 2005.
[15] T. Miyazaki, M. Hashimoto, and H. Onodera,“A Performance Comparison of PLLs for Clock Generation Using Ring Oscillator
VCO and LC Oscillator in a Digital CMOS Process ,” in Proc. IEEE ASP-DAC 2004, pp. 545-546.
[16] Ali Hajimiri and Thomas H. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” IEEE Journal of Solid-state
Circuits, vol. 33, n. 2, pp. 179-194, February 1998.
[17] Behzad Razavi, “A Study of Phase Noise in CMOS Oscillators”, IEEE Journal of Solid-state Circuits, vol. 31, n. 3, pp. 331-343,
March 1996.
[18] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” Proc. IEEE CICC, pp.569 - 572,
May 2000.
[19] C. P. Yue and S. S. Wong, “On-chip spiral inductors with patternedground shields for Si-based RF IC’s,” in 1997 Symp. VLSI
Circuits Dig. Tech. Papers, 1997, pp. 85–86.
[20] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGRAW-HILL, Inc. 2001.
[21] Chieh-Lun Chiang, Chin-Lung Yang, and Shao-Ping Yu, “Low-Power Oscillator with Memory Reduction Tail Transistors for 2.4
GHz ISM Band Applications,” Microwave Integrated Circuits Conference, 2012. EuMIC 2012. European, pp. 532-535. Oct. 2012.
[22] Chin-Chun Lin, Shih-Wei Chen, Chih-Chieh Yu, and Shih-Wei Chen, “Low Phase Noise Quadrature Voltage Controlled Oscillator
For WiMax Application, ” IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1609-
1612, 2008.
[23] C. H. Chun, “Compact wideband LC VCO with active inductor harmonic filtering technique,” Electronics Letters, vol. 47, pp. 190-
191, Feb. 2011.
[24] Y. Weng, H. Gao, and L. Sun, “A 1.5-3.0GHz wideband vco with low gain variation ,” in Electrical Design of Advanced
Packaging and Systems Symposium (EDAPS), 2011 IEEE, dec. 2011, pp. 1–4.
[25] Ko-Chi Kuo , “A wide tuning range 2.2 to 2.8 GHz VCO with the phase noise enhanced techniques,” in Proc. Asia-Pacific
Microw. Conf. (APMC’11), Melbourne , Dec. 2011, pp. 781-784.
[26] Qing Liu, Jiangtao Sun, Toshihiko Yoshi masu, Satoshi Kura chi, and Nobuyuki Itoh, “15 GHz-Band Low Phase-Noise LC-VCO
with Second Harmonic Tunable Filtering Technique,” IEEE 20th International Symposium on Personal, Indoor and Mobile Radio
Communications, pp. 1592-1595, 2009.
[27] Sang-Woong Yoon, Eun-Chul Park, Chang-Ho Lee, Sanghoon Sim, Sang-Goog Lee, Euisik Toonm, Joy Laskar, and Songcheol
Hong, “5~6 GHz-Band GaAs MESFET - Based Cross-Coupled Differential Oscillator MMICs With Low Phase - Noise
Performance,” IEEE Microwave Wireless Compon. Lett, Vol. 11, pp. 495~497, Dec. 2001.
[28] Y. J. Moon, Y. S. Roh, C. Y. Jeong, and C. Too, “A 4.39–5.26 GHz LC-Tank CMOS Voltage-Controlled Oscillator With Small
VCO-Gain Variation,” IEEE Microw. Wireless Compon. Lett., Vol. 19, no.8, pp. 524-526, Aug. 2009.
[29] C. P. Liang, T. J. Huang, P. Z. Rao, and S. J. Chung, “Low-power VCO with phase-noise improvement in 0.18 mm CMOS
technology,” Electron. Lett., vol. 46, no. 20, pp. 1385-1387, 2010.
[30] Y. C. Hsu, H. K. Chiou, H. K. Chen, T. Y. Lin, D. C. Chang, and Y. Z. Juang, “Low phase noise and low power consumption
VCO using CMOS and IPD technologies ,” IEEE Trans. Compon., Packag. Manuf. Technol., vol. 1, no. 5, pp. 673–680, May
2011.
[31] P. Liu, P. Upadhyaya, Jung, D. Heo, H. Kim, and B. S. Kim, “Dynamically switched low-phase-noise LC YCO with harmonic
filtering, ”Electron. Lett., vol. 47, no. 14, pp. 792-793, July 2011.
[32] H. Tong, S. Cheng, Y. C. Lo, A. I. Karsilayan, and J. Silva-Martinez, “An LC Quadrature VCO Using Capacitive Source
Degeneration Coupling to Eliminate Bi-Modal Oscillation,” IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 59, no.9, pp. 1871-
1879, Sep. 2012.
[33] Kang-Chun Peng and Chan-Hung Lee,“A 5 GHz CMOS Quadrature VCO with Precise Quadrature Phase,.”Asia-Pacific
Microwave Conference Proceedings (APMC), 2012 international conference, Dec. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code