Responsive image
博碩士論文 etd-0012117-163328 詳細資訊
Title page for etd-0012117-163328
論文名稱
Title
使用拆分、合併與三級切換開關技術之十位元 0.5V 500KS/s逐漸逼近式類比數位轉換器使用 90 nm製程
A 0.5 V 10-bit 500KS/s SAR ADC With Merge、Split and Tri-Level Switching in 90 nm CMOS
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-11
繳交日期
Date of Submission
2017-01-12
關鍵字
Keywords
拆分合併開關、逐漸逼近式類比數位轉換器、低速度、低電壓、三級切換開關
Successive Approximation ADC, Low Voltage, Low Speed, Merge and Split Switching, Tri-level Switching
統計
Statistics
本論文已被瀏覽 5746 次,被下載 116
The thesis/dissertation has been browsed 5746 times, has been downloaded 116 times.
中文摘要
本論文使用 TSMC 90nm 製程技術,提出一個操作電壓在 0.5V,取樣頻率每秒五十萬次、十位元應用於生物訊號的逐漸逼近式類比數位轉換器。本文提出之設計將應用於物聯網相關的感測器與感測器電路,此設計可以達到低成本與低 功耗的目標。
在逐漸逼近式類比數位轉換器設計中,為了使效能提升並且降低電容陣列功率消耗,因此採用了拆分合併的電路架構。另外也採用動態比較器技術,以減少靜態功率消耗。為了使電路更快進入比較狀態,在拆分合併架構中將多設計一組開關,使電壓能更快趨於穩定狀態。本文中採用拆分合併架構的切換方法,其電容陣列的能量消耗只比單調式架構略少一點,探究其原因,發現電容陣列在重置過程中的能量消耗過大。因此為了減少拆分合併架構的重置消耗功率,對電容陣 列重新調整。設計方法為,將電容陣列中最大的電容移除,也就是使用 N-1 位 元的電路架構,實現 N 位元電路架構的功能,優點在於可以降低一半的重置消 耗功率。為了達到 N-1 位元轉 N 位元的方法,設計兩組三級切換開關,使電 容陣列中的 Cf 可以進行運算,進而達到降低功率消耗的目的。
最終本論文提出一個輸入訊號為 500Ks/s,SNDR 為 53.384 dB,有效位元 數為 8.575 位元,微分非線性誤差 (DNL) 為 0.373/-1.0 LSB,積分非線性誤差 (INL) 為 1.922/-2.098 LSB。所消耗的功率為 1.4261 µW,晶片佈局面積為 0.5665 mm × 0.55 mm。
Abstract
This thesis presents a 10-bit 500KS/s Successive Approximation Analog-to-Digital Converter (SAR ADC) for biomedical applications with a 0.5 V supply voltage which is implemented by using TSMC 90nm process technology. The proposed in this paper will be applied to the sensors and sensor circuits related to the Internet-of-Things (IoT). This design can achieve the purpose of low cost and low power. In the SAR ADC design in order to improve performance and reduce DAC switching energy, so we use the merge and split (MS) switching architecture. In addition dynamic comparator technology is also used to reduce static power consumption. In order to make the circuit faster to enter the comparison state, so in the MS architecture will be more design a group of switches, so that the voltage can be more quickly stabilized. In this thesis, the DAC switching energy is only slightly less than that of the monotonic, It is found that the reset energy of the DAC switching energy is too large in the reconstruction process. Therefore, to reduce the MS reset energy, we re-adjust for the capacitor array. The design approach is to remove the maximum capacitance of the capacitor array that is to use the N-1 bit architecture to transfer the function of N bit architecture, the advantage is that can reduce the energy of half of the reproduction. In order to achieve N-1 bit transfer N-bit method, the design of two groups of Tri-level switching, so that the capacitor array Cf can be calculated, and thus to reduce power consumption purposes. When sampling rate is 500KS/s, the SNDR is 53.384 dB, and ENOB is 8.575 bit. DNL and INL are 0.373/-1.0 LSB and 1.922/-2.098 LSB. The power consumption is 1.4261 µW, and the chip area is 0.5665 mm × 0.55 mm
目次 Table of Contents
目錄
論文審定書 ............................................................................................................ i
摘 要...................................................................................................................... ii
ABSTRACT .................................................................................................................. iii
目錄................................................................................................................................ iv
圖目錄........................................................................................................................ vii
表目錄........................................................................................................................... x
第 1 章 緒論.................................................................................................................. 1
1.1 研究動機與目標 ........................................................................................... 1
1.2 論文組織架構 ............................................................................................... 4
第 2 章 類比數位轉換器基本原理介紹...................................................................... 5
2.1 常見的類比數位轉換器架構 ....................................................................... 5
2.1.1 快閃式類比數位轉換器(Flash ADC) .................................................. 5
2.1.2 兩階段類比數位轉換器(Two-step ADC) ............................................ 6
2.1.3 管線式類比數位轉換器(Pipeline ADC) .............................................. 7
2.2 逐漸逼近式類比數位轉換器架構 (Successive Approximation ADC) ...... 9
2.2.1 傳統式類比數位轉換器(Conventional SAR ADC) ........................... 11
2.2.2 單調式類比數位轉換器(Monotonic SAR ADC) ............................... 13
2.2.3 平均充電式類比數位轉換器(Charge-Average Switching SAR ADC) 14
2.2.4 拆分合併式類比數位轉換器(Merge and Split SAR ADC) .............. 16
2.3 類比數位轉換器的特性參數 ..................................................................... 19
2.3.1 最小有效位元(Least Signification Bit) .............................................. 19
2.3.2 量化誤差(Quantization Error) ............................................................ 19
2.3.3 單一性(Monotonicity) ........................................................................ 19
2.3.4 靜態性能參數 ..................................................................................... 20
2.3.4.1 微分非線性度誤差(Differential Nonlinearity, DNL) ................ 20
2.3.4.2 積分非線性度誤差(Integral Non-Linearity, INL) ..................... 21
2.3.4.3 遺失碼(Missing Code) ............................................................... 22
2.3.4.4 偏移誤差與增益誤差(Offset and Gain Error) ........................... 22
2.3.5 動態性能參數 ..................................................................................... 24
2.3.5.1 訊號雜訊比(Signal-to-Noise Ratio, SNR) ................................. 24
2.3.5.2 訊號雜訊失真比(Signal-to-Noise & Distortion Ratio, SNDR) . 24
2.3.5.3 無寄生動態範圍(Spurious Free Dynamic Range, SFDR) ......... 24
2.3.5.4 有效位元(Effective Number of Bits, ENOB) ............................ 25
第 3 章 低功率類比數位轉換器電路設計................................................................ 26
3.1 設計考量 ..................................................................................................... 26
3.2 參考電路之電容陣列 ................................................................................. 26
3.2.1 單調式電容陣列 ................................................................................. 26
3.2.2 拆分單調式電容陣列 ......................................................................... 30
3.2.3 拆分合併式開關之電容陣列 ............................................................. 32
3.2.4 提出拆分合併式與三級開關之電容陣列 ......................................... 35
3.3 切換能量分析 ............................................................................................. 37
3.3.1 電容陣列開關能量分析 ..................................................................... 37
3.3.2 提出之架構開關能量分析 ................................................................. 38
第 4 章 類比數位轉換器系統實現............................................................................ 43
4.1 取樣保持電路(Sample and hold circuit, S/H) ............................................ 47
4.1.1 電阻值設計考量 ................................................................................. 48
4.1.2 拔靴式開關 (Bootstrapped Switch) ................................................... 48
4.2 比較器電路(Comparator) ........................................................................... 53
4.3 逐漸逼近暫存器邏輯控制電路(Successive Approximation Register logic, SAR Control logic) ..................................................................................... 55
4.4 電容與電容陣列電路佈局設計 ................................................................. 58
4.4.1 MOS 電容 .......................................................................................... 58
4.4.2 MIM 電容 .......................................................................................... 58
4.4.3 MOM 電容 ......................................................................................... 59
4.4.4 電容陣列設計 ..................................................................................... 60
4.5 類比數位轉換器全電路之佈局 ................................................................. 62
第 5 章 效能與模擬結果............................................................................................ 66
5.1 效能測試方法-FFT test .............................................................................. 66
5.2 模擬結果與比較 ......................................................................................... 68
5.2.1 靜態分析 ............................................................................................. 69
5.2.2 動態分析 ............................................................................................. 73
第 6 章 結論................................................................................................................ 76
6.1 結論 ............................................................................................................. 76
6.2 未來展望與待改進之處 ............................................................................. 76
6.2.1 未來展望 ............................................................................................. 77
6.2.2 待改進之處 ......................................................................................... 77
參考文獻...................................................................................................................... 81
參考文獻 References
[1] D. A. Johns, K. Martin, “Analog Integrated Circuit Design,” John Wiley & Sons, 1997.
[2] R. J. Baker, “CMOS Circuit Design, Layout, and Simulation Third Edition,”
John Wiley & Sons, 2010.
[3] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC
with a monotonic capacitor switching procedure,” IEEE Journal of Solid-State
Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
[4] Jin-Yi Lin and Chih-Cheng Hsieh, “A 0.3 V 10-bit 1.17 f SAR ADC With Merge
and Split Switching in 90 nm CMOS,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 62, no. 1, pp. 70-79, Jan. 2015.
[5] Kuan-Ting Lin, and Kea-Tiong Tang, “A 0.5 V 1.28-MS/s
4.68-fJ/Conversion-Step SAR ADC With Energy-Efficient DAC and Trilevel
Switching Scheme,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 24, no. 4, pp. 1441–1449 , Apr. 2016.
[6] C. C. Liu, Ph.D. thesis. Department of Electrical Engineering National Cheng
Kung University Tainan, Taiwan, R.O.C. “Design of High-Speed
Energy-Efficient Successive-Approximation Analog-to-Digital Converters,” June.
2010.
[7] B. P. Ginsburg and A. P. Chandrakasan, “500-MS/s 5-bit ADC in 65-nm CMOS
with split capacitor array DAC,” IEEE Journal of Solid-State Circuits, vol. 42,
no. 4, pp. 739-747, April. 2007.
[8] C.-Y. Liou and C.-C. Hsieh, “A 2.4-to-5.2 fJ/conversion-step 10 b 0.5-to-4 MS/s
SAR ADC with charge-average switching DAC in 90 nm CMOS,”
IEEE International Solid-State Circuits Conference Digest of Technical Papers,
pp. 280–281, Feb. 2013.
[9] Lin, Y. Z., Shyu, Y. T., Kuo, C. H., Huang, G. Y., Liu, C. C., & Chang, S.
J. “Multi-Step Switching Methods for SAR ADCs,” in Proc. 10th International
Conference on Sampling Theory and Applications, pp. 552–555, July. 2013.
[10] W. Y. Pang, C. S. Wang, Y. K. Chang, N. K. Chou, and C. K. Wang, “A 10-bit
500-KS/s low power SAR ADC with splitting capacitor for bio-medical
applications,” in Proc. IEEE Asian Solid-State Circuits Conference, pp. 149–152,
Nov. 2009.
[11] S.-I. Chang, K. Al-Ashmouny, and Y. Euisik, “A 0.5 V 20 fJ/conver-sion-step
rail-to-rail SAR ADC with programmable time-delayed con-trol units for
low-power biomedical application,” in Proc. IEEE ESSCIRC, pp. 339–342, Sep.
2011.
[12] C. Lillebrekke, C. Wulff, and T. Ytterdal, “Bootstrapped switch in low-voltage
digital 90nm CMOS technology,” in Proc. IEEE NORCHIP Conference, pp.
234-236, Nov. 2005.
[13] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline
analog-to-digital converter,” IEEE Journal of Solid-State Circuits, vol. 34, pp.
599-606, May 1999.
[14] G. Huang, P. Lin, “A fast bootstrapped switch for high-speed high-resolution
A/D converter,” 2010 IEEE Asia Pacific Conference on Circuits and Systems, pp.
382-385, Dec. 2010.
[15] R. Lotfi , M. Taherzadeh-Sani , M. Y. Azizi and O. Shoaei “A 1-V MOSFET-only
fully-differential dynamic comparator for use in low-voltage pipelined A/D
converters,” International Symposium of Signals, Circuits and Systems. vol. 2,
pp.377 -380, Jul 2003.
[16] J. Craninckx, G. Van der Pl as, “A 65fJ/Conversion-Step 0-to-50MS/s
0-to-0.7mW 9b Charge-Sharing SAR ADC in 90nm Digital CMOS,” IEEE
International Solid-State Circuits Conference Digest of Technical Papers,
pp.246-247, Feb. 2007.
[17] L. Sumanen, M. Waltari and K. Halonen, “A mismatch insensitive CMOS
dynamic comparator for pipeline A/D converters,” IEEE International
Conference of Electronics, Circuits and Systems, vol. 1, pp. 32-35, Dec. 2000.
[18] R. Lotfi, M. Taherzadeh-Sani, M. Y. Azizi, O. Shoaei, “A 1-V MOSFET-only
fully-differential dynamic comparator for use in low-voltage pipelined A/D
converters,” International Symposium of Signals, Circuits and Systems, vol. 2, pp.
377-380, Jul. 2003.
[19] R. Lotfi, M. Taherzadeh-Sani, M. Y. Azizi, O. Shoaei, “10-bit 30-MS/s SAR
ADC Using a Switchback Switching Method,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584–588, March. 2013.
[20] H.C. Tseng and H.H. Ou, “Low-power rail-to-rail 6-bit flash ADC based on a
novel complementary average-value approach,” International Symposium of Low
Power Electronics and Design, pp. 252-256, Aug. 2004.
[21] C.-W. Hsu and T.-H. Kuo, “6-bit 500 MHz flash A/D converter with new design
techniques,” IEE Proceedings of Circuits, Devices and Systems, vol. 150, no. 5,
pp. 460-464, Oct. 2003.
[22] S.C. Hsia and W.C. Lee, “A very low-power flash A/D converter based on
CMOS Inverter Circuit,” Fifth International Workshop of System-on-Chip for
Real-Time Applications, pp. 107-110, Jul. 2005.
[23] A. Gupta, K. Nagaraj, and T. Viswanathan, “A two-stage ADC architecture with
VCO-based second stage,” IEEE Transactions on Circuits and Systems II,
Express Briefs, vol. 58, no. 11, pp. 734–738, Nov. 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code