Responsive image
博碩士論文 etd-0012117-172047 詳細資訊
Title page for etd-0012117-172047
論文名稱
Title
針對具有擾動非線性系統之離散型順滑模態控制器設計
Design of Discrete-Time Sliding Mode Controllers for A Class of Perturbed Nonlinear Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-06
繳交日期
Date of Submission
2017-01-16
關鍵字
Keywords
適應控制、離散系統、順滑模態控制、擾動估測器、匹配擾動
matched perturbations, adaptive control, perturbation estimation, discrete-time system, sliding mode control
統計
Statistics
本論文已被瀏覽 5667 次,被下載 0
The thesis/dissertation has been browsed 5667 times, has been downloaded 0 times.
中文摘要
本論文針對具有匹配擾動之多輸入多輸出非線性系統設計一個離散型適應性順滑模態控制器以解決追蹤之問題。大致上,控制器設計過程主要分成兩個部分。第一部分為設計離散型順滑面函數,使得受控軌跡能到達至順滑面附近。第二部分則引入適應機制來設計控制器。其中,系統中擾動的上界是未知的,且與時間與狀態有關,該假設代表控制器能夠容忍更多擾動之形式。由於擾動估測器的建構,使得擾動估測誤差的上界資訊不需事先預知。結果也顯示出順滑變數之軌跡將收斂至一小區間內,且可藉由調整控制器參數來調整追蹤精準度。最後,分別提供一個數值範例與一個實例範例以驗證所提出控制器設計的可行性。
關鍵詞: 順滑模態控制,離散系統,擾動估測器,適應控制,匹配擾動。
Abstract
In this thesis a design methodology of adaptive discrete-time sliding mode controllers for a class of MIMO nonlinear systems with matched perturbations is proposed to solve tracking problems. Basically, the designing process of controllers contains two parts. The first part is to design the discrete sliding surface function, so that the controlled trajectory can reach a band of sliding surface. The second part is designing the controllers and adaptive mechanisms embedded. The unknown upper bounds of perturbations encountered in the systems depend on both states and time, this assumption allows the proposed control scheme tolerating more kinds of perturbations. Perturbation estimators are also constructed so that there is no need to know the upper bound of perturbation estimation error beforehand. It is shown that the trajectories of sliding variables will converge to a small bounded region, and the tracking accuracy can be adjusted through the design parameters. A numerical example and a practical example are given to demonstrate the feasibility of the proposed control scheme.
Keywords: sliding mode control, discrete-time system, perturbation estimation, adaptive control, matched perturbations
目次 Table of Contents
論文審定書 ……………………………………………………………………… i
誌謝 ………………………………………………………………………… ii
中文摘要 ………………………………………………………………………… iii
Abstract ………………………………………………………………………… iv
List of Figures ………………………………………………………… vii
Chapter 1 Introduction 1
1.1 Motivation …………………………………………………………………… 1
1.2 Brief Sketch of the Contents ……………………………………………… 3
Chapter 2 System Structure and Controller Design 4
2.1 System Descriptions and Problem Formulations…………………………….. 4
2.2 Design of the Sliding Surface………………………………………………… 6
2.3 Design of the Discrete-time Controller and Stability Analysis ...……………. 9
2.4 Estimation of Perturbation………………………………………………… 20
Chapter 3 Simulations and Examples 22
3.1 Numerical Example ......…………………………………………………….. 22
3.2 Practical Example ….…………………………………………………………27
Chapter 4 Conclusions 54
Bibliography 55
參考文獻 References
[1] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on
Automatic Control, vol. 22, no. 2, pp. 212-222, 1977.
[2] T. L. Chern, C. W. Chuang and R. L. Jiang, “Design of discrete integral variable
structure control systems and application to brushless dc motor control ,” Automat-
ica, vol. 32, no. 5, pp. 773-779, 1996.
[3] B. Beltran, T. A-Ali and M. E. H. Benbouzid, “Sliding mode power control of
variable-speed wind energy conversion systems,” IEEE Transactions on Energy
Conversion, vol. 23, pp. 551-558, no.2, 2008.
[4] I. Munteanu, S.Bacha, A. I. Bratcu, J. Guiraud and D. Roye, “Energy-reliability
optimization of wind energy conversion systems by sliding mode control,” IEEE
Transactions on Energy Conversion, vol. 23, no. 3, pp. 975-985, 2008.
[5] L. C. Fu and T. L. Liao, “Global state robust tracking of nonlinear systems using
variable structure control and with an application to a robotic manipulator,” IEEE
Transactions of Automatic Control, vol. 35, no. 12, pp. 1345-1350, 1990.
[6] S. N. Singh and A. R. Coelho, “Nonlinear control of mismatched uncertain linear
systems and application to control of aircraft,” Journal of Dynamic Systems,
Measurement and Control, vol. 106, pp. 203-210, 1984.
[7] C. Milosavljevic, “General condition for the existence of a quasi-sliding mode on
the switching hyperplane in discrete variable structure systems,” Automation and
Remote Control, vol. 46, no. 3, pp. 307-314, 1985
[8] S. Z. Sarpturk, Y. Isteifanopulos and O.Kaynak, “On the stability of discrete-time
sliding mode control system,” IEEE Transactions of Automatic Control, vol. 32, no.
10, pp. 930-932, 1987.
[9] K. Furuta, “Sliding mode control of a discrete system,” Systems and Control Letters, vol. 14, no. 2, pp. 145-152, 1990.
[10] W. Gao, Y. Wang and A. Homaifa, “Discrete-time variable structure control systems,” IEEE Transactions on Industrial Electronics, vol. 42, no. 2, pp. 117-122,1995.
[11] A. Bartostzewicz, “Remark on discrete time variable structure control systems,”
IEEE Transactions on Industrial Electronics, vol. 43, no. 11, pp. 235-238, 1996.
[12] A. Bartostzewicz, “Discrete-time quasi-sliding mode control strategies ,” IEEE
Transactions on Industrial Electronics, vol. 45, no. 4, pp. 633-637, 1998.
[13] C. Y. Chan, “Discrete adaptive sliding mode controller,” Automatica, vol. 33, no. 5, pp. 999-1002, 1997.
[14] K. B. Park, “Discrete time sliding mode controller for linear time-varying systems with uncertainties,” IEE 2000 Electronics Letters, vol. 36, no. 25, pp. 2111-2112, 2000.
[15] N. Yugang and D. W. C. Ho, “Stabilization of discrete time stochastic systems via sliding mode technique,” Journal of the Franklin Institute, vol. 349, no. 4, pp. 1497-1508, 2012.
[16] M. Wu and J. S Chen, “A discrete time global quasi-sliding mode control scheme
with bounded external disturbance rejection,” Asian Journal of Control, vol. 16, no.
6, pp. 1839-1848, 2014.
[17] A. Bartostzewicz and P. Lesniewski, “Reaching law-based sliding mode congestion control for communication networks,” IET Control Theory and Applications, vol. 8, no. 17, pp. 1914-1920, 2014.
[18] A. Bartostzewicz and P. Lesniewski, “New switching and nonswitching type reaching laws for SMC of discrete-time systems,” IEEE Transactions on Control Systems Technology, vol. 24, no. 2, pp. 670-677, 2016.
[19] A. Bartostzewicz and P. Latosinski, “Discrete time sliding mode control with reduced switching - a new reaching law approach,” International Journal of Robust
and Nonlinear Control, vol. 26, pp. 47-68, 2016.
[20] S. Janardhanan and B. Bandyopadhyay, “Multirate output feedback based robust
quasi-sliding mode control of discrete time system,” IEEE. Transactions on Auto-
matic Control, vol. 52, no. 3, pp. 499-503, 2007.
[21] Y. Niu, D. W. C. Ho and Z. Wong, “Improve sliding mode control for discrete
time via reaching law,” IET Control Theory and Applications, vol. 4, no. 11, pp.
2245-2251, 2010
[22] J. Xiong, Q. Gan andW. Ren, “Boundedness of discretised non-linear systems under fast terminal sliding mode control,” IET Control Theory and Application, vol. 10, iss. 16, pp. 2100-2109, 2016
[23] M. L. Corradini, A. Cristofaro, G. Orlando and S. Pettinari, “Robust control of
multi-input periodic discrete-time systems with saturating actuators,” International
Journal of Control, vol. 86, no. 7, pp. 1240-1247, 2013
[24] S. Chakvabarty and B. Bandyopadhyay, “A generalized reaching law for discrete
time sliding mode control,” Automatica, vol. 52, pp. 83-86, 2015.
[25] H.Ma, J.Wu and Z. Xiong, “Dicrete-time sliding mode control with improved quasi sliding mode domain,” IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6292-6304, 2016
[26] K. S. Kim and K. H. Rew, “Reduced order disturbance observer for discrete-time
linear systems,” Automatica, vol. 49, no. 4, pp. 968-975, 2013
[27] H. Du, X. Yu, M. Z. Q. Chen and S. Li, “Chattering-free discrete-time sliding mode control,” Automatica, vol. 68, pp. 87-91, 2016
[28] S. Qu, X. Xia and J. Zhang, “Dynamics of discrete time sliding mode control uncertain systems with a disturbance compensator,” IEEE Transactions Industrial Electronics, vol. 61, no. 7, pp. 3502-3510, 2014.
[29] Q. Xu and Y. Li, “Model predictive Discrete-time sliding mode control of a nanopositioning piezostage without model hysteresis,” IEEE. Transactions on Control Systems Technology, vol. 20, no. 4, pp. 983-994, 2012.
[30] C. C. Cheng and Y. C. Chu, “Design of discrete quasi-sliding mode controller with perturbation estimation,” Proceedings of the American Control Conference., vol.1, pp. 621-625, 2000.
[31] R. C. Lai and C. C. Cheng, “Design of discrete variable structure controller for
perturbed MIMO system,” 15th IFAC World Congress, Barcelona, Spain, pp. 21-26,
2002.
[32] X. Chen and T. Fukuda, “Adaptive quasi-sliding mode control for discrete time
multivariable systems,” International Journal of Control, vol. 72, no. 2, pp. 133-
140, 1999.
[33] S. Govindaswamy, T. Floquet and S. K. Spurgeon, “Discrete time output feedback sliding mode tracking controlfor systems with uncertainties,” International Journal of Robust and Nonlinear Control, vol. 24, no. 15, pp. 2098-2118, 2014.
[34] Y. J. Liu, “Reinforcement Learning Design-Based Adaptive Tracking Control with Less Learning Parameters for Nonlinear Discrete-time MIMO Systems,” IEEE Transactions on Neural Network and Learning Systems, vol. 26, no. 1, pp. 165-176, 2015.
[35] Z. Galias and X. Yu, “Euler’s discretization of single input sliding mode control
systems,” IEEE. Transactions on Automatic Control, vol. 52, no. 9, pp. 1726-1730, 2007.
[36] S. Qu, X. Xia and J. Zhang, “Dynamical behaviors of an Euler discretized sliding
mode control systems,” IEEE. Transactions on Automatic Control, vol. 59, no. 9, pp. 2525-2529, 2014.
[37] H. K Khalil, Nonlinear Systems, 2nd edition, Prentice-Hall International, Inc., 1996.
[38] X. Yu, B. Wang and X. Li, “Computer-controlled variable structure systems: The
state-of-the-Art,” IEEE Transactions on Industrial Informatics, vol. 8, no. 2, pp. 197-204 , 2012.
[39] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge: Cambridge
University Press , 1988.
[40] R. Sharma, P. Gaur and A.P. Mittal, “Performance analysis of two-degree of freedom fractional order PID controller for robotic manipulator with payload,” ISA Transactions, vol. 58, pp. 279-291, 2015.
[41] H. Elmali and N. Olgac, “Sliding mode control with perturbations estimation (SMCPE):a new approach,” International Journal of Control, vol. 56, no. 4, pp. 923-941, 1992.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.178.37
論文開放下載的時間是 校外不公開

Your IP address is 18.189.178.37
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code