Responsive image
博碩士論文 etd-0013115-001559 詳細資訊
Title page for etd-0013115-001559
論文名稱
Title
田口及均勻實驗法應用於多元醇合成奈米銀分析
Analysis of Nano-Silver Synthesis by Polyol Process using Taguchi and Uniform Design
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-01-05
繳交日期
Date of Submission
2015-01-13
關鍵字
Keywords
均勻實驗法、透明導電薄膜、田口實驗法、奈米銀、多元醇
Uniform Design, Nano-silver, Taguchi, Polyol method, Transparent Conductive Film
統計
Statistics
本論文已被瀏覽 5684 次,被下載 0
The thesis/dissertation has been browsed 5684 times, has been downloaded 0 times.
中文摘要
本研究主要為利用多元醇化學法合成奈米銀粒子及奈米銀線,分為兩大部分,第一部分為奈米銀粒子量測分析,以化學還原法製備奈米銀粒子,透過使用PVP作為分散劑,硝酸銀為銀離子添加劑,乙二醇為還原劑及溶劑,進而將奈米銀粒子萃取出來,再由電噴霧製程將奈米銀粒子噴附在印刷電路板上,進行自發式聚集製程法後,使用四點探針量測其電阻值、X射線能量散布分析儀量測其表面成分並藉由掃描式電子顯微鏡獲得奈米銀粒子之形貌;第二部份為奈米銀線之最佳化量測分析,分別利用田口實驗法及均勻實驗設計法以奈米銀線長徑比為目標值進行最佳化分析,探討各因子對於長徑比之影響分析,進一步將奈米銀線製成薄膜,量測其電性及光學性質。本研究結果顯示,合成奈米銀粒使用分子量較低之PVP所合成銀粒粒徑較小且較均勻,當奈米銀粒進行自發式聚集製程時,濃度越高、震盪時間越長,其聚集效果越明顯。利用田口實驗法分析均值得知,以奈米銀線線徑比為目標值望大之最佳化參數為0.21g PVP、0.065g AgCl、0.22g AgNO3,得知其線徑比為72.9 ± 6.6。藉由均勻實驗法以線徑比為目標值分析,影響線徑比控制變因之顯著因子Rank為PVP > AgNO3 > AgCl。進一步將優化出來之Ag NWs製成薄膜,得穿透率約為52%,薄膜厚度約為705.9Å,其片電阻值為53.128 MΩ/sq;穿透率約為18%,薄膜厚度約為2918.0Å,其片電阻值為,20.098 kΩ/sq。
Abstract
In this study, polyol method was used to synthesize nano-silver. The first part is the analysis of silver nanoparticles (AgNPs) synthesized by polyol method. The ethylene glycol (EG) was reducing agent and solvent. Polyvinylpyrrolidone (PVP) and silver nitrate (AgNO3) were dispersant and silver additive, respectively. Then, the AgNPs were extracted and electrospun on printed circuit board by electrospinning process and then collected by Ostwald ripening process. Next, the sheet resistance of AgNPs was measured by four-point probe. The ingredient of AgNPs was determined by energy-dispersive X-ray spectroscopy and the morphology of AgNPs was observed by scanning electron microscope. The second part was analysis of optimal silver nanowire (AgNWs). The Taguchi and uniform design were adopted to investigate the influence of synthesis parameters on aspect ratio of AgNWs and obtain optimal AgNWs used to fabricate film. Moreover, the electrical and optical properties were measured. This study shows that the diameter of AgNPs synthesized by low molecular weight PVP was small and uniform. For the Ostwald ripening process, the aggregated effect of AgNPs was more obvious with higher concentration and longer time of vibration of AgNPs. For the Taguchi analysis of AgNWs, the optimal parameter was 0.21g PVP, 0.065g silver chlorine (AgCl), 0.22g AgNO3 and 72.9 ± 6.6 aspect ratio. For the uniform design, the rank of influence of parameters on aspect ratio of AgNWs was PVP > AgNO3 > AgCl. Then, the optimal AgNWs were used to fabricate AgNWs transparent conductive film. For the film, the transmittance was 52% when the thickness was 705.9Å and the sheet resistance was 53.128 MΩ/sq. The transmittance was 18% when the thickness was 2918.0Å and the sheet resistance was 20.098 kΩ/sq.
目次 Table of Contents
第一章 序論 - 1 -
1.1 前言 - 1 -
1.2 研究背景 - 1 -
1.3 研究動機與目的 - 3 -
1.4 本文架構 - 3 -
第二章 理論基礎與原理 - 4 -
2.1 奈米銀合成製備 - 4 -
2.1.1 多元醇化學還原法 - 5 -
2.1.2 奧斯特瓦爾德熟化 - 6 -
2.3 實驗設計法 - 7 -
2.3.1 田口實驗法 - 8 -
2.3.1.1 直交表 - 8 -
2.3.1.2 品質因子 - 8 -
2.3.1.3 品質特性 - 9 -
2.3.1.4 田口實驗程序 - 10 -
2.3.1.5 田口實驗品質特性分析 - 10 -
2.3.2 均勻實驗法 - 10 -
2.3.2.1 均勻實驗法概論 - 10 -
2.3.2.2 均勻設計表 - 11 -
2.3.2.3 均勻實驗程序 - 12 -
2.3.2.4 均勻設計實驗結果分析 - 13 -
2.2 電紡絲及電噴霧技術原理 - 13 -
2.2.1 電噴霧法 - 13 -
2.2.2 電紡絲技術 - 14 -
第三章 研究方法 - 16 -
3.1 實驗流程架構 - 16 -
3.2 實驗設備與藥品 - 17 -
3.2.1 奈米銀配製之設備及藥品 - 17 -
3.2.2 電紡絲及電噴霧製程之設備 - 20 -
3.3 實驗製程 - 20 -
3.3.1 奈米銀製備流程 - 20 -
3.3.2 奈米銀純化方式 - 21 -
3.3.3 奈米銀粒子量測分析 - 22 -
3.3.3.1 奈米銀粒子自發聚集製程 - 23 -
3.3.3.2 奈米銀粒子之微導電線應用 - 23 -
3.3.4 奈米銀線之最佳化量測分析 - 24 -
3.3.4.1 田口實驗法 - 25 -
3.3.4.2 均勻實驗法 - 26 -
3.4 實驗分析儀器介紹 - 28 -
3.4.1 掃描式電子顯微鏡 - 28 -
3.4.2 能量散布分析儀 - 28 -
3.4.3 四點探針 - 29 -
3.4.4 穿透率系統 - 30 -
3.4.5 色彩輝度計 - 31 -
第四章 實驗結果與討論 - 31 -
4.1 奈米銀粒子量測分析 - 31 -
4.1.1 不同合成材料對奈米銀粒成長的影響 - 31 -
4.1.2 不同PVP分子量對奈米銀粒成長的影響 - 33 -
4.1.3 合成時間與粒徑比較 - 36 -
4.1.4 奈米銀粒自發聚集製程(奧氏熟化) - 38 -
4.1.4.1 表面形貌分析 - 38 -
4.1.4.2 電性量測 - 41 -
4.1.4.3 分析能量光譜散射儀成份分析 - 42 -
4.1.4.4 奈米銀粒附著影響因子 - 43 -
4.1.5 奈米銀粒搭配電紡製程之結果分析 - 46 -
4.1.6 奈米粒之微導線應用 - 47 -
4.2 奈米銀線之最佳化量測分析 - 49 -
4.2.1 合成奈米銀線之材料 - 49 -
4.2.1.1 不同PVP分子量對奈米銀線成長的影響 - 49 -
4.2.1.2 不同晶種材料對奈米銀線成長的影響 - 51 -
4.2.1.3 不同銀來源對奈米銀線成長的影響 - 53 -
4.2.2 田口實驗法分析 - 55 -
4.2.2.1 田口實驗法分析-奈米銀線形貌分析 - 55 -
4.2.2.2 田口實驗法分析-S/N ratio - 61 -
4.2.2.3 田口實驗法分析-均值 - 63 -
4.2.2.4 田口實驗法最佳化 - 65 -
4.2.3 均勻實驗法分析 - 67 -
4.2.3.1 均勻實驗法分析-奈米銀線形貌分析 - 68 -
4.2.3.2 均勻實驗法分析-線性回歸分析 - 73 -
4.2.4 奈米銀線薄膜之電性及光學性質分析 - 75 -
4.2.4.1 奈米銀線薄膜之穿透度分析 - 75 -
4.2.4.2 奈米銀線薄膜之電性與穿透度關係 - 76 -
4.2.4.3 奈米銀線薄膜之LED應用 - 78 -
第五章 結論與未來展望 - 78 -
參考文獻 - 80 -
參考文獻 References
[1] C. Faure, A. Derre, and W. Neri, "Spontaneous formation of silver nanoparticles in multilamellar vesicles," Journal of Physical Chemistry B, vol. 107, pp. 4738-4746, May 22 2003.
[2] B. Sun, X. Jiang, S. Dai, and Z. Du, "Single-crystal silver nanowires: Preparation and Surface-enhanced Raman Scattering (SERS) property," Materials Letters, vol. 63, pp. 2570-2573, Dec 15 2009.
[3] Y. Song, R. M. Garcia, R. M. Dorin, H. Wang, Y. Qiu, E. N. Coker, et al., "Synthesis of platinum nanowire networks using a soft template," Nano Letters, vol. 7, pp. 3650-3655, Dec 2007.
[4] G. Yan, L. Wang, and L. Zhang, " Recent research progress on preparation of silver nanowires by soft solution method, preparation of gold nanotubes and Pt nanotubes from resultant silver nanowires and their applications in conductive adhesive," Reviews on Advanced Materials Science, vol. 24, pp. 10-25, Jun 2010.
[5] Q. F. Zhou and Z. Xu, "The preparation of nano-scale plate silver powders by visible light induction method," Journal of Materials Science, vol. 39, pp. 2487-2491, Apr 1 2004.
[6] S. Jradi, L. Balan, X. H. Zeng, J. Plain, D. J. Lougnot, P. Royer, et al., "Spatially controlled synthesis of silver nanoparticles and nanowires by photosensitized reduction," Nanotechnology, vol. 21, Mar 5 2010.
[7] N. R. Jana, L. Gearheart, and C. J. Murphy, "Wet chemical synthesis of high aspect ratio cylindrical gold nanorods," Journal of Physical Chemistry B, vol. 105, pp. 4065-4067, May 17 2001.
[8] C. J. Murphy and N. R. Jana, "Controlling the aspect ratio of inorganic nanorods and nanowires," Advanced Materials, vol. 14, pp. 80-82, Jan 4 2002.
[9] H. Yu, P. C. Gibbons, K. F. Kelton, and W. E. Buhro, "Heterogeneous seeded growth: A potentially general synthesis of monodisperse metallic nanoparticles," Journal of the American Chemical Society, vol. 123, pp. 9198-9199, Sep 19 2001.
[10] N. Leopold and B. Lendl, "A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride," Journal of Physical Chemistry B, vol. 107, pp. 5723-5727, Jun 19 2003.
[11] D. H. Chen and Y. W. Huang, "Spontaneous formation of Ag nanoparticles in dimethylacetamide solution of poly(ethylene glycol)," Journal of Colloid and Interface Science, vol. 255, pp. 299-302, Nov 15 2002.
[12] T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, et al., "Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method," Nano Research, vol. 7, pp. 236-245, Feb 2014.
[13] J. P. Zhang, P. Chen, C. H. Sun, and X. J. Hu, "Sonochemical synthesis of colloidal silver catalysts for reduction of complexing silver in DTR system," Applied Catalysis a-General, vol. 266, pp. 49-54, Jul 12 2004.
[14] C. Johans, J. Clohessy, S. Fantini, K. Kontturi, and V. J. Cunnane, "Electrosynthesis of polyphenylpyrrole coated silver particles at a liquid-liquid interface," Electrochemistry Communications, vol. 4, pp. 227-230, Mar 2002.
[15] S. Komarneni, D. S. Li, B. Newalkar, H. Katsuki, and A. S. Bhalla, "Microwave-polyol process for Pt and Ag nanoparticles," Langmuir, vol. 18, pp. 5959-5962, Jul 23 2002.
[16] V. Hornebecq, M. Antonietti, T. Cardinal, and M. Treguer-Delapierre, "Stable silver nanoparticles immobilized in mesoporous silica," Chemistry of Materials, vol. 15, pp. 1993-1999, May 20 2003.
[17] X. W. Zheng, L. Y. Zhu, X. J. Wang, A. H. Yan, and Y. Xie, "A simple mixed surfactant route for the preparation of noble metal dendrites," Journal of Crystal Growth, vol. 260, pp. 255-262, Jan 2 2004.
[18] R. R. Naik, S. J. Stringer, G. Agarwal, S. E. Jones, and M. O. Stone, "Biomimetic synthesis and patterning of silver nanoparticles," Nature Materials, vol. 1, pp. 169-172, Nov 2002.
[19] 李. 周更生, 高振裕,盧育杰, "功能性粉末 奈米銀," 專題報導12月 2006.
[20] S. Y. Y. Leung and D. C. C. Lam, "Geometric and compaction dependence of printed polymer-based RFID tag antenna performance," Ieee Transactions on Electronics Packaging Manufacturing, vol. 31, pp. 120-125, Apr 2008.
[21] Z. C. Liu, Y. Su, and K. Varahramyan, "Inkjet-printed silver conductors using silver nitrate ink and their electrical contacts with conducting polymers," Thin Solid Films, vol. 478, pp. 275-279, May 1 2005.
[22] E. Hrehorova, M. Rebros, A. Pekarovicova, B. Bazuin, A. Ranganathan, S. Garner, et al., "Gravure Printing of Conductive Inks on Glass Substrates for Applications in Printed Electronics," Journal of Display Technology, vol. 7, pp. 318-324, Jun 2011.
[23] M. Grouchko, A. Kamyshny, C. F. Mihailescu, D. F. Anghel, and S. Magdassi, "Conductive Inks with a "Built-In" Mechanism That Enables Sintering at Room Temperature," Acs Nano, vol. 5, pp. 3354-3359, Apr 2011.
[24] S. Jeong, H. C. Song, W. W. Lee, Y. Choi, and B.-H. Ryu, "Preparation of aqueous Ag Ink with long-term dispersion stability and its inkjet printing for fabricating conductive tracks on a polyimide film," Journal of Applied Physics, vol. 108, Nov 15 2010.
[25] J. Perelaer, B.-J. de Gans, and U. S. Schubert, "Ink-jet printing and microwave sintering of conductive silver tracks," Advanced Materials, vol. 18, pp. 2101-+, Aug 18 2006.
[26] S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Frechet, and D. Poulikakos, "Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles," Applied Physics Letters, vol. 90, Apr 2 2007.
[27] M. L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanpera, M. Suhonen, et al., "Electrical sintering of nanoparticle structures," Nanotechnology, vol. 19, Apr 30 2008.
[28] S. Magdassi, M. Grouchko, O. Berezin, and A. Kamyshny, "Triggering the Sintering of Silver Nanoparticles at Room Temperature," Acs Nano, vol. 4, pp. 1943-1948, Apr 2010.
[29] Q. Cao, Z. T. Zhu, M. G. Lemaitre, M. G. Xia, M. Shim, and J. A. Rogers, "Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes," Applied Physics Letters, vol. 88, Mar 13 2006.
[30] B. Dan, G. C. Irvin, and M. Pasquali, "Continuous and Scalable Fabrication of Transparent Conducting Carbon Nanotube Films," Acs Nano, vol. 3, pp. 835-843, Apr 2009.
[31] X. Wang, L. Zhi, and K. Muellen, "Transparent, conductive graphene electrodes for dye-sensitized solar cells," Nano Letters, vol. 8, pp. 323-327, Jan 2008.
[32] L. Hu, H. Wu, and Y. Cui, "Metal nanogrids, nanowires, and nanofibers for transparent electrodes," Mrs Bulletin, vol. 36, pp. 760-765, Oct 2011.
[33] C.-H. Liu and X. Yu, "Silver nanowire-based transparent, flexible, and conductive thin film," Nanoscale Research Letters, vol. 6, 2011 2011.
[34] L. Hu, H. S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, "Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes," Acs Nano, vol. 4, pp. 2955-2963, May 2010.
[35] G. B. Sergeev, Nanochemistry. Russian Federation: Elsevier, 2006.
[36] P. H. Catherine Brechignac, Marcel Lahmani. (2006). Nanomaterials and Nanochemistry.
[37] J. Blackman, Handbook of Metal Physics. United Kingdom: Elsevier, 2008.
[38] R. Gottesman, A. Tangy, I. Oussadon, and D. Zitoun, "Silver nanowires and nanoparticles from a millifluidic reactor: application to metal assisted silicon etching," New Journal of Chemistry, vol. 36, pp. 2456-2459, Dec 2012.
[39] 連昭晴, "鐵/金核殼型磁性複合奈米粒子 之製備與應用," 成功大學化學工程學系學位論文, pp. 1-113, 2004.
[40] Y. Sun, B. Gates, B. Mayers, and Y. Xia, "Crystalline silver nanowires by soft solution processing," Nano Letters, vol. 2, pp. 165-168, 2002.
[41] 洪琨皓, "多元醇法還原之電紡Ag/polymer纖維及導電薄膜特性探討," 碩士論文, 機械與機電工程學系, 國立中山大學, 高雄,台灣, 2014.
[42] 奧斯瓦爾德熟化. Available: http://zh.wikipedia.org/wiki/奧斯瓦爾德熟化
[43] 曾昭鈞, 均勻設計及其應用:工要學類;中醫學類專用. 北京: 中國醫藥科技出版社, 2005.
[44] 盧柏任, "應用田口法與反應曲面法於SMT印刷製程," 碩士論文, 機械工程系, 龍華科技大學, 桃園, 2014.
[45] 楊育碩, "以田口法最佳化多孔矽奈米粉末合成參數以改善鋰離子電池陽極材料充放電性質," 博士論文, 材料科學工程學系, 國立清華大學, 新竹, 2014.
[46] 李榮明, "應用田口法於顯示器閘極絕緣層氮化矽薄膜厚度均勻性最佳化之研究," 碩士論文, 機械與自動化工程系, 國立高雄第一科技大學, 高雄, 2014.
[47] 謝耀輝, "鐵路車輛懸吊系統之最佳化設計," 碩士論文, 機械與自動化工程系, 國立高雄第一科技大學, 高雄,台灣, 2013.
[48] 陳柏夫, "新式ITI人工牙根之動態應力分析與最佳化設計," 碩士論文, 機械與自動化工程系, 國立高雄第一科技大學, 高雄,台灣, 2013.
[49] 施名哲, "公路車車架水平力與踏力疲勞分析與最佳化設計," 碩士論文, 機械與自動化工程系, 國立高雄第一科技大學, 高雄,台灣, 2013.
[50] 蔡孟儒, "應用均勻實驗設計與克利金反應曲面於人工牙根最佳化設計," 碩士論文, 機械與自動化工程系, 國立高雄第一科技大學, 高雄,台灣, 2012.
[51] 林晉禾, "應用均勻實驗設計與克利金插值法於自行車車架之最佳化分析," 碩士論文, 機械與自動化工程系, 國立高雄第一科技大學, 高雄,台灣, 2011.
[52] 方開泰, "均勻設計-數理方法在試驗設計中的應用," 概率統計通訊, vol. 1, pp. 56-97, 1978.
[53] Y. Wang, Fang, K.T., "A note on uniform distribution and experimental design," Kexue Tongbao, vol. 26, pp. 485-489, 1981.
[54] 方開泰, 均勻設計與均勻設計表. 北京: 科學出版社, 1994.
[55] A. K. A. Jaworek, A. T. Sobczyk, M. Lackowski, T. Czech, S. Ramakrishna, et al., "Electrospray nanocoating of microfibres," presented at the E-MRS Fall Meeting 2007 - Acta Materilla Gold Medal Workshop, Warsaw, Poland, 2007.
[56] X. L. Rayleigh, "On the equilibrium of liquid conducting masses charged with electricity," Philosophical Magazine Series 5, vol. 14, pp. 184-186, 1882.
[57] "A. Formhals."
[58] G. Taylor, "ELECTRICALLY DRIVEN JETS," Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, vol. 313, pp. 453-&, 1969 1969.
[59] G. Zheng, L. Wang, H. Wang, D. Sun, W. Li, and L. Lin, "Deposition characteristics of direct-write suspended micro/nano-structures," in Micro and Nano Technology - 1st International Conference Society of Micro/Nano Technology, CSMNT, November 19, 2008 - November 22, 2008, Beijing, China, 2009, pp. 439-444.
[60] D. H. Sun, C. Chang, S. Li, and L. W. Lin, "Near-field electrospinning," Nano Letters, vol. 6, pp. 839-842, Apr 2006.
[61] W. Teo and S. Ramakrishna, "A review on electrospinning design and nanofibre assemblies," Nanotechnology, vol. 17, p. R89, 2006.
[62] Z. Y. Ou, Z. H. Liu, C. T. Pan, L. W. Lin, Y. J. Chen, and H. W. Lai, "Study on piezoelectric properties of near-field electrospinning PVDF/MWCNT nano-fiber," in 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2012, March 5, 2012 - March 8, 2012, Kyoto, Japan, 2012, pp. 125-128.
[63] L. B. Valdes, "Resistivity measurements on germanium for transistors," Proceedings of the IRE, vol. 42, pp. 420-427, 1954.
[64] Y. Tang, W. He, G. Zhou, S. Wang, X. Yang, Z. Tao, et al., "A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering," Nanotechnology, vol. 23, Sep 7 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.139.70.131
論文開放下載的時間是 校外不公開

Your IP address is 3.139.70.131
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code