Responsive image
博碩士論文 etd-0013116-193745 詳細資訊
Title page for etd-0013116-193745
論文名稱
Title
樹狀ZigBee環境中減少孤兒問題的新配址機制
A Novel Address Assignment Mechanism for Alleviating Orphan Problem in Tree-Based ZigBee Environment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
68
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-12-29
繳交日期
Date of Submission
2016-01-15
關鍵字
Keywords
樹狀拓樸、分散式位址分配演算法、無線感測網路、位址分配、ZigBee、分散式借用位址演算法、孤兒節點
ZigBee, WSNs, DAAM, tree topology, address assignment, DIBA, orphan node
統計
Statistics
本論文已被瀏覽 5636 次,被下載 229
The thesis/dissertation has been browsed 5636 times, has been downloaded 229 times.
中文摘要
ZigBee是無線感測網路中相當熱門的通訊標準,其特色為低功率、低成本、低反應時間、可容納大量感測裝置等。這項技術遵循IEEE 802.15.4標準與ZigBee通訊協定。目前主要應用有軍事、自然環境、健康護理、家居生活及商業行為等方面。ZigBee無線網路使用分散式位址分配演算法(Distributed Address Assignment Mechanism, DAAM)來分配具有唯一性的網路位址給每一個想要加入樹狀網路拓樸的裝置。這個演算法容易實作,但路由功能的子節點數量以及樹狀網路拓樸的高度卻會受限於三個網路參數:路由節點擁有的子節點數量(Cm)、路由節點擁有的路由功能子節點數量(Rm)、樹狀拓樸的最大高度(Lm)。網路中的三個參數若設定不良,將會造成裝置與網路拓樸隔離而成為孤兒節點;意即有些佈署(Deployment)完成的裝置節點,即使可以和通訊範圍內已連結成功的裝置節點進行通訊,而且在網路中尚存在未使用的網路位址,但是最終卻無法成功的加入網路拓樸。
本文針對孤兒節點問題提出Ask Shift and Set Zone (ASSZ)演算法以減少孤兒問題。這方法包含了兩個階段:第一階段使用Ask and Shift機制,調整節點連結的方式讓孤兒節點加入樹狀拓樸;第二階段使用Set Zone機制,藉由終端的路由節點創造新的區域(New Zone)。模擬結果顯示,ASSZ在減少ZigBee無線感測網路中孤兒節點數量以及提升節點連結率的效率優於同樣以DAAM演算法為基礎的分散式借用位址演算法(Distributed Borrowing Addressing, DIBA)。
Abstract
ZigBee is a popular communication standard for wireless sensor networks, characterized with low power, low implementing costs, quick response time, and being able to accommodate a large number of sensor devices, etc. This technology follows IEEE802.15.4 and ZigBee communications protocol and has been widely applied on military, natural environments, health care, home life, and commercial activity. ZigBee wireless networks use DAAM (Distributed Address Assignment Mechanism) algorithm to assign unique address for every device that intends to join the tree topology. This algorithm is easy to implement but the number of children of a router and the depth of the network will be restricted by three network configuration parameters: the maximum number of children of a router (Cm), the maximum number of child routers of a router (Rm), and the depth of the network (Lm). Improper adopting these three parameters may incur many devices isolated from the network and become orphan devices. This means that some deployed devices can not join the network topology even though they can communicate with other joined devices and there still have available addresses.
In this thesis, we introduce a scheme, called Ask Shift and Set Zone (ASSZ), to alleviate the orphan problem. This scheme includes two stages: In the first stage, we use Ask and Shift mechanism to adjust the topology to let the orphan node connect to the network. In the second stage, we use Set Zone mechanism to create a new zone by using the router in the terminal node of tree. Simulation results reveal that ASSZ can effectively reduce the number of orphan nodes and improve the node join ratio compared to Distributed Borrowing Addressing scheme which is also based on DAAM.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖次 viii
表次 x
字母縮寫對照表 xi
第一章 導論 1
1.1 簡介 1
1.2 ZigBee簡介 2
1.3 ZigBee之特色 3
1.4 ZigBee網路裝置與拓樸結構 4
1.5 研究動機 9
1.6 論文架構 10
第二章 相關研究 11
2.1 ZigBee位址分配介紹 11
2.2 DAAM分散式網路位址分配機制 12
2.3 SAAM配址相關研究探討 15
2.4 DAAM配址相關研究探討 16
第三章 系統架構與運作 18
3.1 第一階段:Ask and Shift 18
3.1.1 問題描述與設計動機 18
3.1.2 功能與名詞釋義 22
3.1.3 Ask and Shift運作方式 24
3.2 第二階段 Set Zone 35
3.2.1 問題描述與設計動機 35
3.2.2 功能與名詞釋義 35
3.2.3 Set Zone運作方式 36
第四章 模擬結果與討論 40
4.1 模擬環境假設 40
4.2 模擬環境參數設定 41
4.3 實驗數據分析與討論 42
4.3.1 鏈結密度對孤兒節點數量的影響 43
4.3.2 全功能與簡化功能裝置比例對孤兒數量的影響 45
4.3.3 節點密度對節點連結率的影響 47
4.3.4 實驗總結 49
第五章 結論 50
參考文獻 51
參考文獻 References
[1] F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A Survey on Sensor Networks,” IEEE Communications Magazine,” vol. 40, no. 8, pp. 102-114, Aug. 2002.
[2] R. Asgarnezhad and J. A. Torkestani, “A Survey on Backbone Formation Algorithms for Wireless Sensor Networks (A New Classification),” Australasian Telecommunication Networks and Applications Conference (ATNAC), pp. 1-4, Melbourne, Australia, Nov. 2011.
[3] P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta, Y. F. Hu. “Wireless Sensor Networks: A Survey on the State of the Art and the 802.15.4 and ZigBee Standards.” Computer Communications, vol. 30, no. 7, pp. 1655–1695, May 2007.
[4] G. Ding, Z. Sahinoglu, P. Orlik, J. Zhang and B. Bhargava, “Tree-based data broadcast in IEEE 802.15.4 and ZigBee networks," IEEE Transactions on Mobile Computing, vol. 5, no. 11, pp. 1561-1574, Sep. 2006.
[5] R. Droms, “Automated configuration of TCP/IP with DHCP,” IEEE Internet Computing, vol. 3, no. 4, pp. 45-53, July 1999.
[6] M. Fang, J. Wan and X. Xu, “A Preemptive Distributed Address Assignment Mechanism for Wireless Sensor Networks”, IEEE International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1-5, Dalian, China, Oct. 2008.
[7] Y. K. Huang, A. C. Pang, P. F. Liu and W. N. Chu, “NAT-ZigBee: NAT-based Address Assignment for Scalable ZigBee Networks,” 31th Annual IEEE International Conference on Computer Communications, pp. 1-9, Orlando, USA, Mar. 2012.
[8] Y. Y. Hsu and C. C. Tseng, “Prime DHCP: a Prime Numbering Address Allocation Mechanism for MANETs,” IEEE International Communications Letters, vol. 9, no. 8, pp. 712-714, Aug. 2005.
[9] W. Jian, F. Miaoqi and X. Xianghua, “PDAA Mechanism: A Preemptive Distributed Address Assignment Mechanism,” IET Conference on Wireless, Mobile and Sensor Networks, pp. 68-71, Shanghai, China, Dec. 2007.
[10] T. Kim, S. Kim, J. Yang, S. Yoo and D. Kim, “Neighbor table based shortcut tree routing in ZigBee wireless networks,” IEEE Transactions on Parallel and Distributed Systems, vol.25, no. 3, pp. 706-716, Mar. 2014.
[11] J. S. Lee, “Performance Evaluation of IEEE 802.15.4 for Low-Rate Wireless Personal Area Networks,” IEEE Transactions on Consumer Electronics, vol. 52, no. 3, pp. 742-749, Aug. 2006.
[12] S. Park, E. J. Lee, J. H. Ryu, S. S. Joo and H. S. Kim, “Distributed Borrowing Addressing Scheme for ZigBee/IEEE 802.15.4 Wireless Sensor Network,” Journal on Electronics and Telecommunications Research Institute , vol. 31, no. 5, pp. 525-533, Oct. 2009.
[13] M. S. Pan, C. H. Tsai, and Y.C. Tseng, “The Orphan Problem in ZigBee Wireless Networks,” IEEE Transactions on Mobile Computing, vol. 8, no. 11, pp. 1573-1584, Nov. 2009.
[14] C. E. Perkins and P. Bhagwat, “Highly Dynamic Destination Sequenced-Vector Routing (DSDV) for Mobile Computers,” ACM Conference Special Interest Group on Data Communication, vol. 24, no. 4, pp. 234-244, London, United Kingdom. Aug. 1994.
[15] N. E. Rachkidy, A. Guitton, B. Bakhache and M. Misson, "Address assignment for wireless sensor networks in mines," International Conference on Wireless Communications in Unusual and Confined Areas, pp. 1-4, Clermont-Ferrand, France, Aug. 2012.
[16] T. W. Sung and C. S. Yang, "An Adaptive Joining Mechanism for Improving the Connection Ratio of ZigBee Wireless Sensor Networks," International Journal of Communication Systems, vol. 23, no. 2, pp. 231-251, Feb. 2010.
[17] Y. C. Tseng and M. S. Pan, “Quick Convergecast in ZigBee/IEEE 802.15.4 Tree-Based Wireless Sensor Networks”, ACM International Workshop on Mobility Management and Wireless Access, pp. 60-66, Torremolinos, Spain, Oct. 2006.
[18] G. Wang, G. Cao, P. Berman, L. Porta and F. Thomas, “Bidding Protocols for Deploying Mobile Sensors,” IEEE Transactions on Mobile Computing, vol. 6, no. 5, pp. 515-528, May 2007.
[19] Y. C. Wong, J. T. Wang, N. H. Chang, H. H. Liu and C. C. Tseng, “Hybrid Address Configuration for Tree-based Wireless Sensor Networks”, IEEE Communications Letters, vol. 12, no. 6, pp. 414-416, June 2008.
[20] X. Wu, J. Cho, B. J. D'auriol and S. Lee, “Mobility-Assisted Relocation for Self-Deployment in Wireless Sensor Networks,” IEICE Transactions on Communications, vol. E90-B, no. 8, pp. 2056-2069, Aug. 2007.
[21] Z. Yao and F. Dressler, “Dynamic Address Allocations for Management and Control in Wireless Sensor Networks,” IEEE Hawaii International Conference on System Sciences, pp. 292b. HI, USA. Jan. 2007.
[22] L. H. Yen and W. T. Tsai, “Flexible Address Configurations for Tree-Base ZigBee/IEEE 802.15.4 Wireless Network”, IEEE International Conference on Advanced Information Networking and Applications, pp. 395-402, Okinawa, Japan, Mar. 2008.
[23] L. H. Yen and W. T. Tsai, “The Room Shortage Problem of Tree-Based ZigBee/IEEE 802.15.4 Wireless Networks,” Journal on Computer Communication, vol. 33, no. 4, pp. 454-462, Mar. 2010.
[24] J. Zheng and M. J. Lee, “Low rate wireless personal area networks (LR-WPANs) NS2 simulation platform.”
[25] Institute of Electrical and Electronic Engineers (IEEE), “Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs),” The Institute of Electrical and Electronics Engineers Inc., pp. 1-670, NY, USA, Oct. 2003.
[26] ZigBee Alliance, www.ZigBee.org
[27] The Network Simulator NS-2, http://www.isi.edu/nsnam/ns/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code