Responsive image
博碩士論文 etd-0014116-035446 詳細資訊
Title page for etd-0014116-035446
論文名稱
Title
探討HDGF誘導肝癌細胞活性氧表現之機制
The mechanism of Hepatoma-derived growth factor (HDGF)-induced ROS production in HCC cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-25
繳交日期
Date of Submission
2016-02-17
關鍵字
Keywords
肝癌細胞、活性氧、肝癌衍生生長因子、粒線體、核仁素
Hepatoma, HDGF, Reactive Oxygen Species, mitochondria, nucleolin
統計
Statistics
本論文已被瀏覽 5745 次,被下載 30
The thesis/dissertation has been browsed 5745 times, has been downloaded 30 times.
中文摘要
肝癌衍生生長因子 (Hepatoma-Derived Growth Factor;HDGF)可以刺激肝癌細胞 (Hepatocellular carcinoma;HCC)有絲分裂,它由240個胺基酸組成,並且有2個核定位訊息序列(Nuclear Localization Signal;NLS),分別位於C140 domain及PWWP domain。對於HDGF的有絲分裂活性來說,磷酸位點Ser103的磷酸化是非常重要的。過去的研究指出,在肝癌患者中,HDGF和活性氧 (Reactive Oxygen Species;ROS)的表現量會隨著癌化的進程增加,此外,HDGF和nucleolin之間的交互作用也會促進肝癌癌化。因此,在本研究中我們探討了在肝癌細胞中HDGF與ROS生成的關聯性。研究結果發現,HDGF及其C140片段和HDGF S103E蛋白能夠顯著的刺激SK-HEP1肝癌細胞的粒線體ROS生成及促進癌細胞的增殖和侵犯能力。而PWWP片段和HDGF S103A蛋白在促進ROS生成和癌化的功能是較弱的。另外,我們發現使用ROS抑制劑NAC (N-acetyl-L-cysteine) 阻斷ROS生成時HDGF促進癌細胞生長和侵犯的能力也跟著被抑制。接著我們使用抗體中和了HDGF的表面受體Nucleolin (NCL),發現HDGF蛋白和C140片段的功能幾乎完全被阻斷,但HDGF S103E蛋白的功能只有些許的降低。由於HDGF誘導產生的ROS會使得 Superoxide dismutase 1、2 (SOD1、SOD2 )、 Mitofusin-2 (MFN2)、Peroxisome proliferator activated receptor gamma co-activator 1 (αPGC1α ) 表現量上升,Mitochondrial fission 1 protein (FIS1)、Dynamin-related protein 1(DRP1)表現量下降,因此我們推測肝癌細胞為了保護自身不受氧化壓力的影響,會增加抗氧化蛋白質並促進粒線體合成。總結以上結果,此研究證明了HDGF會刺激肝癌細胞的粒線體產生ROS並促進細胞的癌化。
Abstract
Hepatoma-derived growth factor (HDGF) is a mitogen of 240 residues involved in hepatocarcinogenesis. HDGF consists of a highly conserved PWWP domain in the N-terminal 100 residues and the C140 domain with a nuclear localization signal (NLS) that located in C140 domain and PWWP domain respectively. Moreover, the Ser-103 phosphorylation site is necessary for mitogenic activity of HDGF. Studies have shown that HDGF expression and ROS levels increase as HCC progression from Grade Ι to Grade III in HCC patients. Additionally, the interaction of HDGF and nucleolin also promotes liver carcinogenesis. Therefore, we want to investigate the correlation between HDGF and ROS generation in hepatocellular carcinoma. In this study, we found that wild type HDGF protein, C140 domain and S103E protein enhanced ROS production, proliferation and invasion of SK-Hep-1 hepatoma cells. However, the effect of PWWP domain and S103A mutant of HDGF on inducing cell proliferation, invasion and ROS generation was weaker than C140 domain and S103E mutant of HDGF. Blocking ROS generation by NAC attenuated HDGF-induced cell growth and invasion. We further clarified that the function of HDGF protein and C140 domain could be blocked by neutralizing the cell surface dominant receptor nucleolin (NCL), but the capacity for blockage of S103E activity was diminished. Up-regulation of SOD1, SOD2, MFN2 and PGC1α as well as down-regulation of FIS-1 and DRP-1 suggested that HDGF-induced ROS might increase antioxidant proteins to detoxify from the elevated ROS and stimulate mitochondrial biogenesis in HCC. In conclusion, we demonstrated that HDGF-induced mitochondrial ROS generation provoked liver cancer progression.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Figures and Legends viii
Introduction 1
Materials and methods 9
Results 15
Discussion 25
Figures and legends 30
References 57
Appendix 62
參考文獻 References
1 El-Serag, H. B. Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol 35, S72-78 (2002).
2 Venook, A. P., Papandreou, C., Furuse, J. & de Guevara, L. L. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 15 Suppl 4, 5-13, doi:10.1634/theoncologist.2010-S4-0515/suppl_4/5 [pii] (2010).
3 Shiraha, H., Yamamoto, K. & Namba, M. Human hepatocyte carcinogenesis (review). Int J Oncol 42, 1133-1138, doi:10.3892/ijo.2013.1829 (2013).
4 Karaman, B., Battal, B., Sari, S. & Verim, S. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol 20, 18059-18060, doi:10.3748/wjg.v20.i47.18059 (2014).
5 Kim, N. Y. et al. Cisplatin-Based Combination Chemotherapy for Advanced Hepatocellular Carcinoma: A Single Center Experience before the Sorafenib Era. Cancer Res Treat 42, 203-209, doi:10.4143/crt.2010.42.4.203 (2010).
6 Zhang, W. et al. Adjuvant sorafenib reduced mortality and prolonged overall survival and post-recurrence survival in hepatocellular carcinoma patients after curative resection: a single-center experience. Biosci Trends 8, 333-338, doi:10.5582/bst.2014.01120 (2014).
7 Wu, Q. et al. Chemoresistance to gemcitabine in hepatoma cells induces epithelial-mesenchymal transition and involves activation of PDGF-D pathway. Oncotarget 4, 1999-2009, doi:1471 [pii]10.18632/oncotarget.1471 (2013).
8 Hu, T. H. et al. Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98, 1444-1456, doi:10.1002/cncr.11653 (2003).
9 Kishima, Y. et al. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 277, 10315-10322, doi:10.1074/jbc.M111122200M111122200 [pii] (2002).
10 Wang, C. H. et al. Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J 433, 127-138, doi:10.1042/BJ20100589BJ20100589 [pii] (2011).
11 Zhang, J. et al. Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res 66, 18-23, doi:66/1/18[pii]10.1158/0008-5472.CAN-04-3905 (2006).
12 Nakamura, H. et al. Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269, 25143-25149 (1994).
13 Everett, A. D., Yang, J., Rahman, M., Dulloor, P. & Brautigan, D. L. Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen. BMC Cell Biol 12, 15, doi:10.1186/1471-2121-12-151471-2121-12-15 [pii] (2011).
14 Zhou, Y., Zhou, N., Fang, W. & Huo, J. Overexpressed HDGF as an independent prognostic factor is involved in poor prognosis in Chinese patients with liver cancer. Diagn Pathol 5, 58, doi:10.1186/1746-1596-5-581746-1596-5-58 [pii] (2010).
15 Enomoto, H. et al. Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 36, 1519-1527, doi:10.1053/jhep.2002.36935S0270913902003336 [pii] (2002).
16 Yamamoto, S. et al. Expression level of hepatoma-derived growth factor correlates with tumor recurrence of esophageal carcinoma. Ann Surg Oncol 14, 2141-2149, doi:10.1245/s10434-007-9369-9 (2007).
17 Chen, S. C. et al. Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial--mesenchymal transition. J Pathol 228, 158-169, doi:10.1002/path.3988 (2012).
18 Ren, H. et al. Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol 22, 3230-3237, doi:10.1200/JCO.2004.02.08022/16/3230 [pii] (2004).
19 Uyama, H. et al. Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res 12, 6043-6048, doi:12/20/6043 [pii]10.1158/1078-0432.CCR-06-1064 (2006).
20 Tao, F. et al. Prognostic significance of nuclear hepatoma-derived growth factor expression in gallbladder cancer. World J Gastroenterol 20, 9564-9569, doi:10.3748/wjg.v20.i28.9564 (2014).
21 Kung, M. L. et al. Hepatoma-derived growth factor stimulates podosome rosettes formation in NIH/3T3 cells through the activation of phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun 425, 169-176, doi:10.1016/j.bbrc.2012.07.060S0006-291X(12)01356-3 [pii] (2012).
22 Mao, J. et al. Hepatoma-derived growth factor involved in the carcinogenesis 1 El-Serag, H. B. Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol 35, S72-78 (2002).
2 Venook, A. P., Papandreou, C., Furuse, J. & de Guevara, L. L. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 15 Suppl 4, 5-13, doi:10.1634/theoncologist.2010-S4-0515/suppl_4/5 [pii] (2010).
3 Shiraha, H., Yamamoto, K. & Namba, M. Human hepatocyte carcinogenesis (review). Int J Oncol 42, 1133-1138, doi:10.3892/ijo.2013.1829 (2013).
4 Karaman, B., Battal, B., Sari, S. & Verim, S. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol 20, 18059-18060, doi:10.3748/wjg.v20.i47.18059 (2014).
5 Kim, N. Y. et al. Cisplatin-Based Combination Chemotherapy for Advanced Hepatocellular Carcinoma: A Single Center Experience before the Sorafenib Era. Cancer Res Treat 42, 203-209, doi:10.4143/crt.2010.42.4.203 (2010).
6 Zhang, W. et al. Adjuvant sorafenib reduced mortality and prolonged overall survival and post-recurrence survival in hepatocellular carcinoma patients after curative resection: a single-center experience. Biosci Trends 8, 333-338, doi:10.5582/bst.2014.01120 (2014).
7 Wu, Q. et al. Chemoresistance to gemcitabine in hepatoma cells induces epithelial-mesenchymal transition and involves activation of PDGF-D pathway. Oncotarget 4, 1999-2009, doi:1471 [pii]10.18632/oncotarget.1471 (2013).
8 Hu, T. H. et al. Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 98, 1444-1456, doi:10.1002/cncr.11653 (2003).
9 Kishima, Y. et al. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem 277, 10315-10322, doi:10.1074/jbc.M111122200M111122200 [pii] (2002).
10 Wang, C. H. et al. Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J 433, 127-138, doi:10.1042/BJ20100589BJ20100589 [pii] (2011).
11 Zhang, J. et al. Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer Res 66, 18-23, doi:66/1/18 [pii]10.1158/0008-5472.CAN-04-3905 (2006).
12 Nakamura, H. et al. Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 269, 25143-25149 (1994).
13 Everett, A. D., Yang, J., Rahman, M., Dulloor, P. & Brautigan, D. L. Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen. BMC Cell Biol 12, 15, doi:10.1186/1471-2121-12-151471-2121-12-15 [pii] (2011).
14 Zhou, Y., Zhou, N., Fang, W. & Huo, J. Overexpressed HDGF as an independent prognostic factor is involved in poor prognosis in Chinese patients with liver cancer. Diagn Pathol 5, 58, doi:10.1186/1746-1596-5-581746-1596-5-58 [pii] (2010).
15 Enomoto, H. et al. Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 36, 1519-1527, doi:10.1053/jhep.2002.36935S0270913902003336 [pii] (2002).
16 Yamamoto, S. et al. Expression level of hepatoma-derived growth factor correlates with tumor recurrence of esophageal carcinoma. Ann Surg Oncol 14, 2141-2149, doi:10.1245/s10434-007-9369-9 (2007).
17 Chen, S. C. et al. Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial--mesenchymal transition. J Pathol 228, 158-169, doi:10.1002/path.3988 (2012).
18 Ren, H. et al. Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol 22, 3230-3237, doi:10.1200/JCO.2004.02.08022/16/3230 [pii] (2004).
19 Uyama, H. et al. Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res 12, 6043-6048, doi:12/20/6043 [pii]10.1158/1078-0432.CCR-06-1064 (2006).
20 Tao, F. et al. Prognostic significance of nuclear hepatoma-derived growth factor expression in gallbladder cancer. World J Gastroenterol 20, 9564-9569, doi:10.3748/wjg.v20.i28.9564 (2014).
21 Kung, M. L. et al. Hepatoma-derived growth factor stimulates podosome rosettes formation in NIH/3T3 cells through the activation of phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun 425, 169-176, doi:10.1016/j.bbrc.2012.07.060S0006-291X(12)01356-3 [pii] (2012).
22 Mao, J. et al. Hepatoma-derived growth factor involved in the carcinogenesis of gastric epithelial cells through promotion of cell proliferation by Erk1/2 activation. Cancer Sci 99, 2120-2127, doi:10.1111/j.1349-7006.2008.00928.xCAS928 [pii] (2008).
23 Kishima, Y. et al. Antisense oligonucleotides of hepatoma-derived growth factor (HDGF) suppress the proliferation of hepatoma cells. Hepatogastroenterology 49, 1639-1644 (2002).
24 Tsang, T. Y. et al. Mechanistic study on growth suppression and apoptosis induction by targeting hepatoma-derived growth factor in human hepatocellular carcinoma HepG2 cells. Cell Physiol Biochem 24, 253-262, doi:10.1159/000233250000233250 [pii] (2009).
25 Chen, S. C. et al. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget 6, 16253-16270, doi:3608 [pii]10.18632/oncotarget.3608 (2015).
26 Sullivan, L. B. & Chandel, N. S. Mitochondrial reactive oxygen species and cancer. Cancer Metab 2, 17, doi:10.1186/2049-3002-2-17138 [pii] (2014).
27 Waris, G. & Ahsan, H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5, 14, doi:1477-3163-5-14 [pii]10.1186/1477-3163-5-14 (2006).
28 Holmstrom, K. M. & Finkel, T. Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15, 411-421, doi:10.1038/nrm3801nrm3801 [pii] (2014).
29 Yang, Y., Karakhanova, S., Werner, J. & Bazhin, A. V. Reactive oxygen species in cancer biology and anticancer therapy. Curr Med Chem 20, 3677-3692, doi:53483 [pii] (2013).
30 Le Bras, M., Clement, M. V., Pervaiz, S. & Brenner, C. Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20, 205-219 (2005).
31 Verschoor, M. L., Wilson, L. A. & Singh, G. Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Can J Physiol Pharmacol 88, 204-219, doi:10.1139/Y09-135y09-135 [pii] (2010).
32 Gibellini, L. et al. Interfering with ROS Metabolism in Cancer Cells: The Potential Role of Quercetin. Cancers (Basel) 2, 1288-1311, doi:10.3390/cancers2021288cancers2021288 [pii] (2010).
33 Liou, G. Y. & Storz, P. Reactive oxygen species in cancer. Free Radic Res 44, 479-496, doi:10.3109/10715761003667554 (2010).
34 Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49, 1603-1616, doi:10.1016/j.freeradbiomed.2010.09.006S0891-5849(10)00538-1 [pii] (2010).
35 Boland, M. L., Chourasia, A. H. & Macleod, K. F. Mitochondrial dysfunction in cancer. Front Oncol 3, 292, doi:10.3389/fonc.2013.00292 (2013).
36 Sabharwal, S. S. & Schumacker, P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat Rev Cancer 14, 709-721, doi:10.1038/nrc3803nrc3803 [pii] (2014).
37 Shenouda, S. M. et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation 124, 444-453, doi:10.1161/CIRCULATIONAHA.110.014506CIRCULATIONAHA.110.014506 [pii] (2011).
38 Ni, H. M., Williams, J. A. & Ding, W. X. Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4, 6-13, doi:10.1016/j.redox.2014.11.006S2213-2317(14)00118-9 [pii] (2015).
39 Chen, H. & Chan, D. C. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18, R169-176, doi:10.1093/hmg/ddp326ddp326 [pii] (2009).
40 Barbour, J. A. & Turner, N. Mitochondrial stress signaling promotes cellular adaptations. Int J Cell Biol 2014, 156020, doi:10.1155/2014/156020 (2014).
41 Seo, A. Y. et al. New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123, 2533-2542, doi:10.1242/jcs.070490123/15/2533 [pii] (2010).
42 LeBleu, V. S. et al. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. Nat Cell Biol 16, 992-1003, 1001-1015, doi:10.1038/ncb3039ncb3039 [pii] (2014).
43 Archer, S. L. Mitochondrial dynamics--mitochondrial fission and fusion in human diseases. N Engl J Med 369, 2236-2251, doi:10.1056/NEJMra1215233 (2013).
44 Lam, C. F., Peterson, T. E., Croatt, A. J., Nath, K. A. & Katusic, Z. S. Functional adaptation and remodeling of pulmonary artery in flow-induced pulmonary hypertension. Am J Physiol Heart Circ Physiol 289, H2334-2341, doi:00375.2005 [pii]10.1152/ajpheart.00375.2005 (2005).
45 Chan, H. H. et al. Rapid induction of orthotopic hepatocellular carcinoma in immune-competent rats by non-invasive ultrasound-guided cells implantation. BMC Gastroenterol 10, 83, doi:10.1186/1471-230X-10-831471-230X-10-83 [pii] (2010).
46 Enomoto, H., Nakamura, H., Liu, W. & Nishiguchi, S. Hepatoma-Derived Growth Factor: Its Possible Involvement in the Progression of Hepatocellular Carcinoma. Int J Mol Sci 16, 14086-14097, doi:10.3390/ijms160614086ijms160614086 [pii] (2015).
47 Zorzano, A. Regulation of mitofusin-2 expression in skeletal muscle. Appl Physiol Nutr Metab 34, 433-439, doi:10.1139/H09-049h09-049 [pii] (2009).
48 Liesa, M., Palacin, M. & Zorzano, A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev 89, 799-845, doi:10.1152/physrev.00030.200889/3/799 [pii] (2009).
49 Trachootham, D., Alexandre, J. & Huang, P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8, 579-591, doi:10.1038/nrd2803nrd2803 [pii] (2009).
50 Sedlmaier, A. et al. Overexpression of hepatoma-derived growth factor in melanocytes does not lead to oncogenic transformation. BMC Cancer 11, 457, doi:10.1186/1471-2407-11-4571471-2407-11-457 [pii] (2011).
51 Fiaschi, T. & Chiarugi, P. Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol 2012, 762825, doi:10.1155/2012/762825 (2012).
52 Ventura-Clapier, R., Garnier, A. & Veksler, V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 79, 208-217, doi:10.1093/cvr/cvn098cvn098 [pii] (2008).
53 Park, E. J. et al. beta-Lapachone induces programmed necrosis through the RIP1-PARP-AIF-dependent pathway in human hepatocellular carcinoma SK-Hep1 cells. Cell Death Dis 5, e1230, doi:10.1038/cddis.2014.202 (2014).
54 曾宥溱. 2013.探討肝癌衍生生長因子的功能與受體結合之研究.中山大學
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code