Responsive image
博碩士論文 etd-0014116-185008 詳細資訊
Title page for etd-0014116-185008
論文名稱
Title
以垂直流人工濕地處理含硫酸鹽及氨氮之廢水可行性研究
Feasibility of Treatment of Wastewater Containing Sulfate and Ammonia by Vertical-Flow Constructed Wetlands
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-11
繳交日期
Date of Submission
2016-01-14
關鍵字
Keywords
硫酸鹽、垂直流人工濕地、厭氧處理、植生復育、氨氮
Sulfate, VFCW, Vegetation recovery, Ammonia, Anaerobic treatment
統計
Statistics
本論文已被瀏覽 5707 次,被下載 508
The thesis/dissertation has been browsed 5707 times, has been downloaded 508 times.
中文摘要
本實驗以實地操作,進行以垂直流人工濕地模槽系統中,去除硫酸鹽及氨氮之可行性評估,並透過足夠的模槽深度,較能營造出上層好氧與底層厭氧之不同分層環境。
  實驗場址設置於中山大學海洋環境工程系館頂樓,屬於室外的開放空間,本研究以四支圓柱型管柱模擬垂直流人工濕地槽體,並以礫石和污泥為介質材料達到基本過濾,以探討利用其表面所形成之生物膜內之微生物去除營養鹽的效果,所選植栽為培地茅以做為該人工濕地植物,以達到部份水體淨化以及植生復育的效果。此外,額外添加碳源以判斷異營菌是否有消耗分解之能力,在設備方面,分別設置的模槽A為種植培地茅,並以污泥及礫石做為填料(實驗組),而模槽B則僅填入污泥及礫石(控制組),以及模槽C則種植植物,並僅以礫石為填料(控制組),模槽D則僅填入礫石為介質材料(空白組)。系統之進流水樣則採集二級處理的放流水,加上自行配置的硫酸鹽之模擬廢水,並以批次滿管的型式進行實驗。
  實驗結果顯示,以硫酸鹽進流水濃度分別達500 mg/L、600 mg/L、700 mg/L及1000 mg/L 的情況下,硫酸鹽的去除效率比氨氮高,而根據文獻顯示,ORP如果達到-150 mV以下時,會有較佳的硫酸鹽去除效果,亦即處在還原作用較旺盛的環境下,由於各階段實驗數據均顯示模槽A底層80 cm處的ORP均可達到-200 mV以下,因此硫酸鹽的去除效率可達到40%。
  後面階段硫酸鹽進流濃度會以700 mg/L、1000 mg/L配置進流水濃度進行實驗,此濃度與海水中所含的硫酸鹽濃度一致,因此可模擬生活污水中如果混入海水或含有硫酸鹽廢水等的人工濕地處理。
Abstract
In this study, the experiments were designed to analyze the feasibility of sulfate removal and ammonia treatment by vertical-flow constructed wetland systems by using microcosm lab-scale systems. With enough depth, the aerobic environment was controlled in upper layer while anaerobic conditions were controlled in lower layer.
  The testing site was set in an open space located on the top floor of the department building in Department of Marine Environment and Engineering National Sun Yat-sen University. In this study, four tubular columns worked as the vertical flow constructed wetlands. The systems were performed as biofilters, which could remove nutrients by the microorganisms in the biofilm attached on the surface of filter material such as gravel and sludge. Furthermore, part of the water could be purified and the effect of vegetation recovery was significant with the help of vetiver as hygrophytes. Then, extra organic carbon source was added to into the systems to help to inactivate heterotrophic bacteria. In experiment group A, it contained plant species(Vetiver), sludge, and gravel, while in experiment group B, it was worked as, in which control group, it contained only the sludge and gravel without vegetation. Trough experiment group C, also worked as the control group, it contained plants and gravel. For experiment group D, worked as the blank group, it contained only stone. And the source of influent was from the reclaimed water from the secondary treated effluent in the sewage treatment plant of campus with addition of sulfate simulate the wastewater. The systems were operated as batch type filled with water conducted in the study. The results show that the percentage of removal efficiency of sulfate is higher than that of ammonia while concentration of inflow water of sulfate were controlled under 500 mg/L, 600 mg/L, 700 mg/L and 1000 mg/L. According to the reference, if ORP is under -150 mV, the percentage of removal efficiency of sulfate will be better. The figure in each experiment stage shows the same way while ORP is under -200 mV in experiment group A, the percentage of removal efficiency of sulfate can be reached to 40 % in the condition of acute reduction.
  Finally, the concentration of sulfate in influent was prepared up to 700 mg/L and 1000 mg/L, which concentration was almost the sames as the sulfate in ocean.
目次 Table of Contents
摘要 iii
Abstract iv
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1研究動機 1
1.2研究目的 3
第二章 文獻回顧 4
2.1生態工程介紹 4
2.2濕地 5
2.2.1濕地分類與型態 7
2.2.2濕地中的水生植物與功能 7
2.2.3人工濕地分類與功能 8
2.2.4人工濕地問題與展望 11
2.3人工濕地水質淨化機制 12
2.3.1碳的去除機制 14
2.3.2氮的去除機制 16
2.4硫的去除機制 19
2.4.1硫酸鹽脫硫條件 19
2.4.2硫酸鹽還原作用抑制與競爭 20
2.4.3硫酸鹽代謝過程 21
2.4.4 硫酸鹽還原菌之運用 21
2.5案例介紹 22
2.5.1國外實驗模槽之案例 22
2.5.2國內人工濕地案例 25
第三章 實驗方法與材料 27
3.1垂直流人工濕地模槽設計 27
3.1.1模槽設計與配置 27
3.1.2模槽管柱特性與介質填料 28
3.1.3人工濕地植物之選擇 29
3.1.4人工濕地碳源之選擇 31
3.1.5模槽馴養植種污泥 32
3.1.6採樣及分析 33
3.1.7實驗架構與流程 34
3.1.8實驗設計 35
第四章 結果與討論 38
4.1背景介紹 38
4.2實驗數據與結果分析 39
4.2.1預實驗 39
4.2.2第一階段實驗 54
4.2.3第二階段實驗 67
4.2.4第三階段實驗 80
4.3綜合討論 89
第五章 結論與建議 90
5.1結論 90
5.2建議 91
第六章 參考文獻 92
6.1中文參考文獻 92
6.2英文參考文獻 94
參考文獻 References
于立平(1997)。濕地公園規劃策略之研究-以高雄縣鳥松濕地為例(碩士論文),國立中山大學海洋環境及工程學系。
內政部營建署濕地保育法。院臺建字第1030030131號。2015年2月2日。
王裕文(2000)。培地茅(Vetiveria zizanioides)簡介。中華民國雜草學會會刊,21,59-63。
王裕文(2003)。培地茅在泥岩地區之適生性探討。泥岩自然生態工法研討會,3,107-116。
行政院農委會林務局(2003)。何謂濕地。農委會林務局自然資源與生態資料庫。
吳振斌(2008)。複合垂直流人工濕地。北京:科學出版社,1-119。
吳曉蕾(1994)。污染物質在人工濕地中的流向。中國給水排水會刊,10,41-44。
邱文彥(2003)。海岸管理:理論與實務。台北:五南圖書出版公司,21-23。
林俊義(2008)。空氣污染物與酸與對台灣地區農業影響研究。行政院環保署空保處整合型計畫報告,9-16。
林俞辛(2014)。垂直流人工濕地系統中厭氧氨氧化作用之可行性分析(碩士論文)。國立中山大學海洋環境工程學系。
林鎮洋、邱逸文(2002)。生態工法起步中的迷思。營建知訊,236,33-35。
林鎮洋、邱逸文(2001)。自然生態工法之發展與推廣。中國土木水利工程學會土木水利半月集,5,26-28。
荊樹人(2003)。人工濕地之規劃設計理念及案例介紹。生態工法人才培訓講習會論文集。1-10。
陳世偉、吳俊毅、高志明、張有義(2006)。高屏溪舊鐵橋濕地水質淨化功能探討:一個親水的自然世界。中華民國環境保護學會學刊,29,14-18。
陳志祥(2008)。厭氧氨氧化程序影響因子之探討(碩士論文)。東南科技大學防災科技學系。
張惠婷(1996)。以土壤及礫石床人工濕地處理生活污水之研究(碩士論文)。國立中山大學海洋環境工程學系。
張龍、肖文德 (2005)。 厭氧氨氧化菌混培物的培養及上流式厭氧污泥床反應器運行。 華東理工大學學報自然科學版 31, 99-102.
蔣永榮、胡明成(2008)。硫酸鹽廢水生物脫硫研究進展。環境科學與技術期刊,3,3-5。
蔡皓程(2007)。以垂直流人工濕地氮循環過程研究與操作機制探討(碩士論文)。國立中山大學海洋環境工程學系。
劉厚田(1995)。濕地的定義與類型劃分。生物學雜誌,14,76-77。
謝蕙蓮、徐崇彬、陳章波、張文賢(2013)。人工濕地的生態建構與意義。中央研究院生物多樣性研究中心濕地生態研究室研究報告,3-5。
劉輊超、王增長(2008)。硫酸鹽廢水生物處理的影響因素。科技情報開發與經濟會刊,18,126-127。
謝蕙蓮、徐崇彬、陳章波、張文賢(2013)。人工濕地的生態建構與意義。中央研究院生物多樣性研究中心濕地生態研究室研究報告,3-5。
魏美琪(2006)。民眾對濕地的知識和及其態度之探討 - 以高屏溪右岸舊鐵橋人工濕地為例(碩士論文)。國立高雄大學都市發展與建築學系。
顏宛珍(2006)。以人工濕地處理校園化糞池出流水之研究(碩士論文),國立台灣科技大學化學工程系。

Allen, W.C., Hook, P.B., Biederman, J.A., Stein, O.R., (2002). Temperature and wetland plant species effects on wastewater treatment and root zone oxidation. Environmental Quality 31, 1014-1015.
Bavor, J S., (1993). Sustainable suspended solids and nutrient removal in large scale, solid matrix, constructed wetland systems, 220-223.
Bhamidimarri R., Shilton A., Armstrong I ., (1991).Constructed wetlands for wastewater treatment. Water Science and Technology 2, 250-252.
De Graaf, A.A.V., De Bruijn, P., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G., (1996). Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology - UK 142, 2190-2193.
Dosta, J., I. Fernandez, J. R., Vazquez-Padin, A., Mosquera-Corral, J. L., Campos, J., (2008). Short- and long-term effects of temperature on the Anammox process. Journal of Hazardous Materials 154, 691-692.
Elliott, P., Ragusa, S., Catcheside, D., (1998). Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Research 32, 3726-3729.
Fang, H.H.P., Liu, Y., Chen, T., (1997). Effect of sulfate on anaerobic degradation of benzoate in UASB reactors. Journal of Environmental Engineering-Asce 123, 325-327.
Luederitz, V., Eckert, E., Lange-Weber, M., Lange, A., Gersberg, R.M., (2001). Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecological Engineering, 18, 161-169.
Hammer, D.A., (1992). Designing constructed wetlands systems to treat agricultural nonpoint source pollution. Ecological Engineering 1, 56-78.
Hanaki, K., Hong, Z., Matsuo, T., (1992). Production of nitrous-oxide gas during denitrification of waste-water. Water Science and technology 26, 1028-1035.
Kadlec, R.H., & Knight, R.L., (1996). Treatment wetlands. 2nd ed, Lewis Publishers, 35-36.
Lloyd, J.R., Klessa, D.A., Parry, D.L., Buck, P., Brown, N.L., (2004). Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis. Water Research 38, 1827-1829.
Ma, S.J.,(1988)Development of Agro-Ecological Engineering in China, Proceedings of the International Symposium on Agro-Ecological Engineering 12, 2-10.
Mars, R., Mathew, K., Ho, G., (1999). The role of the submerged macrophytes. Ecological Engineering 8, 59-65.
Mitsch, W.J., & Gosselink, J.G., (1998). Values and valuation of wetlands. Wetlands. New York, 586-622.
Mitsch, W.J., & Gosselink, J.G., (1998). Definitions of wetlands. New York, 29-33.
Mitsch, W.J., & Gosselink, J.G., (2000). Wetlands. 3rd, New York, 170-185.
Mitsch, W.J., & Jorgensen, S.E., (2004). Applications of ecological engineering. Ecological engineering and Ecosystem restoration. John Wiley & Sons, New Jersey, 113-321.
Morris, M.C., (1999). The effects of substrate particle size, depth and vegetation on ammonia removal in a vertical flow constructed wetland. Backhuys Publishers, 35-42.
Mulder, A., Vandegraaf, A.A., Robertson, L.A., Kuenen, J.G., (1995). Anaerobic ammonium oxidation discovered in a dentrifying fludized-bed reactor. Microbiology Ecology 16, 177-183.
Postgate, J.R., (1979). The sulphate-reducing bacteria. Cambridge University Press, 9-23.
Reed, S.C., & Middlebrooks, E.J., (1995b). Natural systems for waste management and treatment. New York, 15-18.
Riefler, R.G., Krohn, J., Stuart, B., Socotch, C., (2008). Role of sulfur-reducing bacteria in a wetland system treating acid mine drainage. Science of the Total Environment 394, 225-228.
Siegrist, H., Reithaar, S., Koch, G., Lais, P., (1998). Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater without organic carbon. Water Science and Technology 38, 241-248.
Stein, O.R., Borden-Stewart, D.J., Hook, P.B., Jones, W.L., (2007). Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands. Water Research 41, 3445-3447.
Stephenson, R.J., Branion, R.M.R., Pinder, K.L., (1994). Anaerobic 25℃ and 35℃treatment – sulfur management strategies. Water Science and Technology 29, 434-441.
Tchobanoglous, G., (1993). Constructed wetlands and aquatic plant systems:research, design, operational, and monitoring issues. Lewis Publishers, 237-240.
Thamdrup, B., & Dalsgaard, T., (2002). Production of N-2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology 68, 1315-1316.
Vymazal, J., Brix, H., Cooper, P.F., Green, M.B., Haberl, R., (1998). Removal mechanisms and types of constructed wetlands for wastewater treatment in Europe. Backhuys Publishers, 18-21.
Vymazal, J., Brix, H., Cooper, P.F., Green, M.B., Haberl, R., (1998). Removal mechanisms and types of constructed wetlands for wastewater treatment in Europe. Backhuys Publishers, 35-40.
Wiessner, A., Kappelmeyer, U., Kuschk, P., Kastner, M., (2005). Sulphate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland. Water Research 39, 4645-4649.
Wu, Z.B., (1998). Studies on wastewater purification by constructed wetlands. China, 10-15.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code