Responsive image
博碩士論文 etd-0016118-164748 詳細資訊
Title page for etd-0016118-164748
論文名稱
Title
具模組化建構的快速傅立葉轉換器之可重置硬體設計與實現
Reconfigurable Design and Implementation of Modular-Construction Based FFT Hardware Architecture
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-12-22
繳交日期
Date of Submission
2018-01-17
關鍵字
Keywords
3GPP-LTE規格、多模式、可重置性、單迴路回授架構、快速傅立葉轉換
fast Fourier transform (FFT), 3GPP-LTE, reconfigurable (RC), multi-mode, single-path delay feedback (SDF)
統計
Statistics
本論文已被瀏覽 5652 次,被下載 3
The thesis/dissertation has been browsed 5652 times, has been downloaded 3 times.
中文摘要
在3GPP-LTE通訊系統標準當中,定義了許多不同長度的快速傅立葉轉換規格,因此我們設計一套獨立且高效能的硬體架構,充分利用模組化的設計概念,達到每級模組之間能夠簡單連接的特性,快速支援多種點數長度的運算功能,使得整體系統架構更符合需求與實用性。
本設計在四級模組情況下,整體系統可執行2~2187點等48種不同長度的運算,其中還包含了32種長度是定義在3GPP-LTE的規格中。然而每一級模組中包含了兩個部分:(1) 多模式可重置式運算核心:以Radix-32和Radix-23為設計基礎,妥善發揮硬體重覆使用的概念,並且在不額外增加任何主要硬體(例如乘法器和加法器)的前提之下,可執行六種不同基底的核心運算。(2) 可重置式先進先出暫存元件:透過系統化之先進先出暫存器排列的設計方法,妥善規劃儲存單元的配置,將硬體的使用率發揮到最大。另外我們針對旋轉因子的部分提出了雙階段旋轉因子產生法,面對多種運算長度的情況下,此技術可讓系統有效地降低面積成本,進一步符合行動通訊系統的需求。
在晶片實現上,利用TSMC-40nm CMOS製程技術,核心晶片面積只為0.318mm2,最高操作頻率為350MHz,其對應的平均功率消耗為44.2mW。相較於目前文獻上的其他架構,我們擁有較好的效能,並且可支援最多快速傅立葉轉換模式的選擇。更重要的是,所提出來的硬體架構設計,擁有較好的可擴充性,在面對尚未定義出規格的第五世代通訊協定,未來僅需透過模組之間快速且簡單地連接,即可符合各種點數長度的需求。
Abstract
In the 3GPP-LTE communication standard, it defines many kinds of Fast Fourier Transform(FFT) sizes. So, we design a high performance FFT architecture which makes good use of modular design construction and reconfigurable design to achieve easily connection between every 2 stages. This design can be suitable for any requirement.
In the 4-stage module, it can support 48 modes which perform 2-2187 FFT points. It also supports 32 modes defined in 3GPP-LTE communication standard. Each module contains two parts. (1) Reconfigurable Computing Kernel(RC-CK):We employ radix-32 and radix-23 bases and suitably utilize the hardware reuse property. Without extra of hardware resource (ex:multipliers or adders), it can execute six types of different radix of FFT kernel operations. (2) Reconfigurable First-in First-Out(RC-FIFO):We develop a high efficient design method for supporting many FFT points. The FIFO plan is easily managed and suitably located to maximize the hardware storage usage. In addition, we propose Section-based Twiddle Factor Generator(STFG) to support multi-FFT points. It can reduce the area cost and satisfy any communication systems effectively.
In the chip implementation, the core area is only 0.318 mm2 by using TSMC 40-nm CMOS technology. The maximal operating frequency is 350 MHz and power dissipation in average is 44.2 mW. As compared with other state-of-the-arts, our proposed work has the best performance and support many FFT points. Most important of all, the proposed hardware architecture has the better scalability. In the future, we can support the undefined specifications of the 5th generation wireless system only by increasing/decreasing the module.
目次 Table of Contents
論文審定書………………………………………………………..i
致謝 ……………………………………………………………….ii
摘要………………………………………………………………..iii
Abstract …………………………………………………………iv
目錄………………………………………………………………..v
圖次………………………………………………………………..vii
表次 ………………………………………………………………..ix
第一章 緒論 ……………………………………………………1
1.1 背景 ………………………………………………………....1
1.2 動機與設計目標.......………………………………………..1
1.3 論文架構 ……………………………………………………2
第二章 傅立葉轉換介紹.......………………………………….4
2.1 離散傅立葉轉換與反離散傅立葉轉換….......……………..4
2.2 快速傅立葉轉換........……………………………………….5
2.3 單迴路延遲回授架構..……..………………………………..7
2.3.1 Radix-2、Radix-4與Radix-8的演算法與架構......…..7
2.3.2 Radix-3的演算法與架構……………………………..10
2.3.3 延伸Radix-22與Radix-23的演算法與架構…..……..11
2.3.4 比較各種基數的硬體使用狀況 ……………….……..13
第三章 Radix-rk演算法推導與分析…………………………..14
3.1 Radix-r2演算法介紹………………………………………...14
3.2 Radix-rk優勢分析........……………………………………...16
第四章 新提出的硬體架構....…………………………………..18
4.1 系統簡介.……………………………………………………..18
4.1.1 模組化可重置式之想法與實現....……………………..18
4.1.2 主架構介紹……………….……………………………..19
4.2 技術一:多模式可重置式運算核心.....………………………..22
4.2.1 技術介紹 ………………………………………………..22
4.2.2 電路架構 ………………………………………………..24
4.2.3 效能分析 ………………………………………………..26
4.3 技術二:系統化之先進先出暫存器排列方法.....……………..28
4.3.1 問題陳述 ………………………………………………..28
4.3.2 技術架構簡介與分析…………………….........………..28
4.4 技術三:雙階段旋轉因子產生法…………………….....……..32
4.4.1 設計想法..………………………………………………..32
4.4.2 硬體架構..………………………………………………..35
4.4.3 效能分析.........…………………………………………..37
4.4.4 硬體實現結果..…………………………………………..45
第五章 晶片實現..………………………………………………..48
5.1 合成結果分析...………………………………………………..49
5.2 晶片測試電路結果...…………………………………………..50
5.3 自動測試圖樣產生系統之結果...……………………………..51
5.4 系統佈局成果…………………………………………….........51
5.5 效能比較………………………………………………………..53
第六章 結論與未來展望…………………………………………..56
6.1 結論 ……………………………………………………………..56
6.2 未來展望………………………………………………….……..56
參考文獻 References
[1] S. He and M. Torkelson, "A new approach to pipeline FFT processor," in Parallel Processing Symposium, 1996., Proceedings of IPPS'96, The 10th International, Apr. 1996, pp. 766-770.
[2] D. Hiremath and B. Rajeshwari, "Implementation of Pipelined Radix-2 FFT using SDC and SDF architecture," in Region 10 Conference (TENCON), 2016 IEEE, Nov. 2016, pp. 1660-1663.
[3] Z. Qian and M. Margala, "Low-power split-radix FFT processors using radix-2 butterfly units," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, pp. 3008-3012, April 2016.
[4] M. Garrido, M. Á. Sánchez, M. L. López-Vallejo, and J. Grajal, "A 4096-point radix-4 memory-based FFT using DSP slices," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, pp. 375-379, Jan. 2017.
[5] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, "A dynamic scaling FFT processor for DVB-T applications," IEEE Journal of solid-state circuits, vol. 39, pp. 2005-2013, Nov. 2004.
[6] E. Dubois and A. Venetsanopoulos, "A new algorithm for the radix-3 FFT," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 26, pp. 222-225, Jun. 1978.
[7] S. K. Bashar, "An efficient approach to the computation of fast fourier transform (FFT) by Radix-3 algorithm," in Informatics, Electronics & Vision (ICIEV), 2013 International Conference on, May 2013, pp. 1-5.
[8] S. Prakash and V. Rao, "A new radix-6 FFT algorithm," IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29, pp. 939-941, Aug. 1981.
[9] G. Bi and G. Li, "Pipelined structure based on radix-22 FFT algorithm," in Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference on, Jun. 2011, pp. 2530-2533.
[10] N. H. Cuong, N. T. Lam, and N. D. Minh, "Multiplier-less based architecture for variable-length FFT hardware implementation," in Communications and Electronics (ICCE), 2012 Fourth International Conference on, Aug. 2012, pp. 489-494.
[11] S. He and M. Torkelson, "Designing pipeline FFT processor for OFDM (de) modulation," in Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium on, Oct. 1998, pp. 257-262.
[12] Y. Chen, Y.-C. Tsao, Y.-W. Lin, C.-H. Lin, and C.-Y. Lee, "An indexed-scaling pipelined FFT processor for OFDM-based WPAN applications," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, pp. 146-150, Feb. 2008.
[13] T. Adiono, M. S. Irsyadi, Y. S. Hidayat, and A. Irawan, "64-point fast efficient FFT architecture using radix-23 single path delay feedback," in Electrical Engineering and Informatics, 2009. ICEEI'09. International Conference on, Aug. 2009, pp. 654-658.
[14] M. Garrido, J. Grajal, M. Sánchez, and O. Gustafsson, "Pipelined radix-2(k) feedforward FFT architectures," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, pp. 23-32, Jan. 2013.
[15] T.-D. Chiueh and P.-Y. Tsai, OFDM baseband receiver design for wireless communications: John Wiley & Sons, 2008.
[16] http://www.3gpp.orgtechnologieskeywords-acronyms98-lte.
[17] C. Yu and M.-H. Yen, "Area-efficient 128-to 2048/1536-point pipeline FFT processor for LTE and mobile WiMAX systems," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, pp. 1793-1800, Sept. 2015.
[18] S.-Y. Peng, K.-T. Shr, C.-M. Chen, and Y.-H. Huang, "Energy-efficient 128∼ 2048/1536-point FFT processor with resource block mapping for 3GPP-LTE system," in Proc. Int. Conf. Green Circuits Syst, Jun. 2010, pp. 14-17.
[19] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Mathematics of computation, vol. 19, pp. 297-301, 1965.
[20] L. Ward, "802.11 ac Technology Introduction. Technical white paper," 2012.
[21] K. Gnanishivaram; S. Neeraja, “FFT/IFFT Processor Design for 5G MIMO OFDM Systems”, International Journal of Wireless Communications and Networking Technologies, India, Vol. 3, No. 3, May 2014, p. 54-60..
[22] K.-F. Xia, B. Wu, T. Xiong, and T.-C. Ye, "A Memory-Based FFT Processor Design With Generalized Efficient Conflict-Free Address Schemes," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, pp. 1919-1929, Jun. 2017.
[23] J. Chen, J. Hu, S. Lee, and G. E. Sobelman, "Hardware efficient mixed radix-25/16/9 FFT for LTE systems," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23, pp. 221-229, Feb. 2015.
[24] C.-H. Yang, T.-H. Yu, and D. Markovic, "Power and area minimization of reconfigurable FFT processors: A 3GPP-LTE example," IEEE journal of solid-state circuits, vol. 47, pp. 757-768, Mar. 2012.
[25] M. Wang and Z. Li, "A hybrid SDC/SDF architecture for area and power minimization of floating-point FFT computations," in Circuits and Systems (ISCAS), 2016 IEEE International Symposium on, May 2016, pp. 2170-2173.
[26] K.-J. Yang, S.-H. Tsai, and G. C. Chuang, "MDC FFT/IFFT processor with variable length for MIMO-OFDM systems," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, pp. 720-731, Apr. 2013.
[27] M. Seok, D. Jeon, C. Chakrabarti, D. Blaauw, and D. Sylvester, "A 0.27 V 30MHz 17.7 nJ/transform 1024-pt complex FFT core with super-pipelining," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, Feb. 2011, pp. 342-344.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code