Responsive image
博碩士論文 etd-0016119-163301 詳細資訊
Title page for etd-0016119-163301
論文名稱
Title
一些具有相關誤差反應區面模型下的最適設計
On some optimal design problems for response surface model with correlated errors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-01-11
繳交日期
Date of Submission
2019-01-16
關鍵字
Keywords
D-最適設計、最小支持、空間相關誤差、堆疊芯片
stacked die., spatially dependent errors, D-optimality, minimally supported
統計
Statistics
本論文已被瀏覽 5673 次,被下載 0
The thesis/dissertation has been browsed 5673 times, has been downloaded 0 times.
中文摘要
一個好的實驗能有效地收集資料,並提供有用的資訊,使得我們在統計建模時,能提供精確估計及適當的推論。在本文的第一部分,我們主要探討具有空間誤差的反應曲面模型(RSM)之設計及相關應用問題。在具有固定因子效應和空間誤差的反應曲面模型下,我們尋找為估計模型中未知參數的 D 型最適設計。在假設變數實驗設計區域為一個圓,且兩個觀測值之間的相關性,取決於兩個設計點的距離狀況下, 我們給出了最小支持的 $D$ 最適設計的一些性質,以及依據一些可用來尋找正合D 最適設計的數值演算方法,找到數值最適設計結果,並檢視相關性質。此外,反應曲面的另一個主要思想是用於在實驗中獲得最佳反應值。我們希望用這種方法,找到基於電容耦合的堆疊芯片封裝的差分焊盤佈局最適設計。在本論文的第二部分,我們提供了不同焊盤尺寸下的非線性迴歸模型,利用不同頻率與芯片放置間距距離和重疊百分比展示SNR值,給出有關選取頻率的最適實驗設計。最後並使用反應曲面方法,針對非線性迴歸模型中之參數估計。進一步,對於可控制的參數找到最佳設計配置。
Abstract
Experiments performed with good designs on the settings of controllable factors are essential
collecting useful information efficiently and may provide the precise estimation of statistical
modeling and corresponding inferences. In the first part of this dissertation, our main interest
is to investigate the design problems for first- and second- order response surface models
(RSMs) with correlated errors and related applications. Under the first- and second- order
RSMs with fixed effects and correlated errors, we investigate the D-optimal designs for
estimation of the unknown parameters in the RSMs, for two explanatory variables. The
design region is considered to be within a circle and the correlation between two observations
depends on the distance of the two design points. We present analytical minimally supported
D-optimal design results, and numerical D-optimal designs for circular design region with
spatially correlated error structure.
On the other hand, the main idea of RSM is to use certain experimental procedures to
search for control variables of an optimal response sequentially in an experiment. Based
on such an idea, we would like to find designs optimal for estimation and prediction on the
nonlinear models, used to describe the behaviors of signals obtained from various differential
pad placement designs of a capacitive coupling based stacked die package. In the second
part of this dissertation, we provide parametric models under different pad sizes to exhibit
the patterns of the SNR values versus the frequencies for various die placement designs with
given pitch distance and overlapping percentage. In the end, we use an approach analogous
to the response surface methodology to find the optimal design configuration for each pad
size with an optimal response.
目次 Table of Contents
論文審定書 i
誌謝ii
摘要 iii
Abstract iv
1 Introduction 1
2 Preliminaries 4
2.1 Response surface models and information matrices . . . . . . . . . . . . . 4
2.1.1 Regression models with uncorrelated errors . . . . . . . . . . . . . 5
2.1.2 Non-linear regression models with uncorrelated errors . . . . . . . 7
2.1.3 Response surface models with correlated errors . . . . . . . . . . . 9
2.2 The circulant matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Algorithms for optimal designs . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Generalized simulated annealing algorithm . . . . . . . . . . . . . 18
2.3.2 Particle swarm optimization algorithm . . . . . . . . . . . . . . . 22
3 Optimal designs for response surface models with correlated errors 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 D-optimal designs in linear regression model with two dimensional design
space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Minimally supported D-optimal designs . . . . . . . . . . . . . . . 31
3.2.2 ExactD-optimal designs for second-order Zernekie polynomial model
on a circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.3 Algorithms for exact D-optimal designs . . . . . . . . . . . . . . . 40
3.2.4 Numerical study . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 Case study of wafer measurements . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4 Corner differential pad placement design for a wireless connection stacked die
package 58
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Stacked corner differential pair analysis . . . . . . . . . . . . . . . . . . . 61
4.3 Parametric model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Estimation results with the ED and GED model . . . . . . . . . . . 64
4.3.2 Validation through the interpolation and extrapolation points . . . . 67
4.4 Characteristics of the response curves . . . . . . . . . . . . . . . . . . . . 68
4.5 Design performance configuration . . . . . . . . . . . . . . . . . . . . . . 72
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5 Designing experiments for nonlinear model on differential pad placement design
of a capacitive coupling based stacked die package 80
5.1 The D- and I-optimal designs for the GED model . . . . . . . . . . . . . . 81
5.2 Optimal design configuration . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
參考文獻 References
[1] Angelis, L., Bora-Senta, E., and Moyssiadis, C. (2001). Optimal exact experimental
designs with correlated errors through a simulated annealing algorithm. Computational
Statistics and Data Analysis, 37, 275-296.
[2] Atkinson, A., Donev, A., and Tobias, R. (2007). Optimum experimental designs, with
SAS. Oxford University Press, Oxford.
[3] Aung, M. T. L., Lim, T. H., Yoshikawa, T., and Kim, T. T. H. (2016). 2.31-Gb=s=ch
area-efficient crosstalk canceled hybrid capacitive coupling interconnect for 3D integration.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24, 2703-
2711.
[4] Bendtsen, C. and Bendtsen, M.C. (2011). Package ”pso”.
[5] Bischoff, W. (1992). On exact D-optimal designs for regression models with correlated
observations. Annals of the Institute of Statistical Mathematics, 44, 229-238.
[6] Bischoff, W. (1993). On D-optimal designs for linear models under correlated observations
with an application to a linear model with multiple response. Journal of Statistical
Planning and Inference, 37, 69-80.
[7] Chao, C. Y. (1988). A remark on symmetric circulant matrices, Linear Algebra and its
Applications , 103, 133-148.
[8] Chan, J., Kirk, B., and Paniagua, J. (2008). Performance limitations of backplane links
at 6 Gbps and above. DesignCon.
[9] Chen, R. B., and Huang, M.-N. L. (2000). Exact D-optimal designs for weighted polynomial
regression model. Computational Statistics and Data Analysis, 33, 137-149.
[10] Chen, R. B., Hsu, Y. W., Hung, Y., and Wang, W. (2014). Discrete particle swarm optimization
for constructing uniform design on irregular regions. Computational Statistics
and Data Analysis, 72, 282-297.
[11] Chow, A., Amberg, P., Dayringer, M., Moghadam, H. F., Hopkins, D., Lexau, J., ... and
Ho, R. (2011). System considerations for wireless capacitive chip-to-chip signaling.
Radio-Frequency Integration Technology (RFIT), 2011 IEEE International Symposium
on, 41-44.
[12] Das, R. N., Egitto, F. D., Lauffer, J., Bonitz, B., Wilson, B., Marconi, F., ... and
Markovich, V. R. (2012). 3D-interconnect approach for high end electronics. Electronic
Components and Technology Conference (ECTC), 2012 IEEE 62nd, 1333-1339.
[13] Dette, H., Melas, V. B., and Pepelyshev, A. (2007). Optimal designs for statistical
analysis with Zernike polynomials. Statistics, 41, 453-470.
[14] Dette, H., Kunert, J., and Pepelyshev, A. (2008). Exact optimal designs for weighted
least squares analysis with correlated errors. Statistica Sinica, 18, 135-154.
[15] Dette, H., Pepelyshev, A. and Zhigljavsky, A. (2013). Optimal design for linear models
with correlated observations, The Annals of Statistics , 41, 143-176.
[16] Dette, H., Pepelyshev, A., and Zhigljavsky, A. (2016). Optimal designs in regression
with correlated errors. The Annals of Statistics , 44, 113.
[17] Dette, H., Schorning, K., and Konstantinou, M. (2017). Optimal designs for comparing
regression models with correlated observations. Computational Statistics and Data
Analysis, 113, 273-286.
[18] Fedorov, V. V. (1972). Theory of optimal experiments. Academic Press, New York.
[19] Fedorov, V. V.(1996). Design of spatial experiments: model fitting and prediction.
Handbook of Statistics, 13, 515-553.
[20] Gaffke, N., and Krafft, J. (1982). Exact D-optimal designs for quadratic regression.
Journal of Royal Statistical Society B (Methodological) , 44, 394-397.
[21] Galil, Z., and Kiefer, J. (1977). Comparison of rotatable designs for regression on balls,
I (quadratic). Journal of Statistical Planning and Inference, 1, 27-40.
[22] Gan, C. L., and Hashim, U. (2015). Evolutions of bonding wires used in semiconductor
electronics: perspective over 25 years. Journal of Materials Science: Materials in
Electronics, 26, 4412-4424.
[23] Ho, R., and Drost, R. (Eds.). (2010). Coupled data communication techniques for highperformance
and low-power computing. Springer, New York.
[24] Hoel, P. G. (1958). Efficiency problems in polynomial estimation. The Annals of Mathematical
Statistics, 29, 1134-1145.
[25] Huang, M.-N. L., Lee, C. P., Chen, R. B., and Klein, T. (2010). Exact D-optimal designs
for a second-order response surface model on a circle with qualitative factors.
Computational Statistics and Data Analysis, 54, 516-530.
[26] Huang, Y. J., Guo, M. H., and Chua, C. H. (2017). Differential pad placement design of
a capacitive coupling-based stacked die package. IEEE Transactions on Components,
Packaging and Manufacturing Technology, 7, 1035-1042.
[27] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization, Proceedings of IEEE
International Conference on Neural Networks, 4, 1942-1948.
[28] Kiefer, J. (1960). Optimum experimental designs V, with applications to systematic and
rotatable designs. Berkeley Symposium on Mathematical Statistics and Probability , 1,
381-405.
[29] Kitanidis, P. K., (1987). Parametric estimation of covariances of regionalized variables.
JAWRA Journal of the American Water Resources Association, 23, 557-567.
[30] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220, 671-680.
[31] Kuroda, T. (2017). System integration in a package for cloud and edge. Electron Devices
Technology and Manufacturing Conference (EDTM), 2017 IEEE , 42-43.
[32] Lau, J. H., Lee, C. K., Zhan, C. J., Wu, S. T., Chao, Y. L., Dai, M. J., ... and Cheng, R.
S. (2014). Through-silicon hole interposers for 3D IC integration. IEEE Transactions
on Components, Packaging and Manufacturing Technology, 4, 1407-1419.
[33] Li, Z., Li, Y., and Xie, J. (2014). Design and package technology development of faceto-
face die stacking as a low cost alternative for 3D IC integration. Electronic Components
and Technology Conference (ECTC), 2014 IEEE 64th, 338-341.
[34] Mandal, A.,Wong,W. K., and Yu, Y. (2015). Algorithmic searches for optimal designs.
Handbook of Design and Analysis of Experiments, 755-783.
[35] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equation of state calculations by fast computing machines. The Journal of
Chemical Physics, 21, 1087-1092.
[36] Muller, W. G., and Pazman, A. (2003). Measures for designs in experiments with correlated
errors. Biometrika, 90, 423-434.
[37] Poulton, J.W., Dally,W. J., Chen, X., Eyles, J. G., Greer, T. H., Tell, S. G., ... and Gray,
C. T. (2013). A 0.54 pJ/b 20 Gb/s ground-referenced single-ended short-reach serial
link in 28 nm CMOS for advanced packaging applications. IEEE Journal of Solid-State
Circuits, 48, 3206-3218.
[38] Pukelsheim, F. (2006). Optimal design of experiments, SIMA, Philadelphia.
[39] Racine, J. S. (2014). A primer on regression splines.
https://cran.r-project.org/web/packages/crs/vignettes/
spline_primer.pdf
[40] Ramsay, J.O. and Silverrman, B.W. (2005). Functional data analysis 2nd edition.
Springer, New York.
[41] Ramsay, J., Hooker, G., and Graves, S. (2009). Functional data analysis with R and
Matlab. Springer, New York.
[42] Silverman, B. W. (1985). Some aspects of the spline smoothing approach to nonparametric
regression curve fitting. Journal of the Royal Statistical Society. Series B
(Methodological), 47, 1-52.
[43] Silvey, S. D. (1980). Optimal designs: an introduction to the theory for parameter estimation.
Chapman and Hall, London.
[44] Srivastava, J. N., and Wijetunga, A. M. (1983). D-Optimal cyclic two-dimensional
block designs. Trabajos de Estadistica Y de Investigacion Operativa, 34, 95-108.
[45] Sze, T., Popovic, D., Shi, J., Lai, Y. S., Mitchell, J. G., Guenin, B., ... and Giere,
M. (2010). Early experience with in situ chip-to-chip alignment characterization of
proximity communication flip-chip package. Microelectronics Reliability, 50, 498-506.
[46] Szu, H., and Hartley, R. (1987). Fast simulated annealing. Physics letters A, 122, 157-
162.
[47] Take, Y., Matsutani, H., Sasaki, D., Koibuchi, M., Kuroda, T., and Amano, H. (2014).
3D NoC with inductive-coupling links for building-block SiPs. IEEE Transactions on
Computers, 63, 748-763.
[48] Tsallis, C., and Stariolo, D. A. (1996). Generalized simulated annealing. Physica A:
Statistical Mechanics and its Applications, 233, 395-406.
[49] Tu, K. N., Hsiao, H. Y., and Chen, C. (2013). Transition from flip chip solder joint to
3D IC microbump: Its effect on microstructure anisotropy. Microelectronics Reliability,
53, 2-6.
[50] Ucinski, D., and Atkinson, A. C. (2004). Experimental design for time-dependent models
with correlated observations. Studies in Nonlinear Dynamics and Econometrics, 8,
1217-1271.
[51] Wang, J. Q., Dong, C. Z. (2007). Inverse matrix of symmetric circulant matrix on skew
field. International Journal of Algebra, 1, 541-546.
[52] Xiang, Y., Gubian, S., Suomela, B., and Hoeng, J. (2013). Generalized simulated annealing
for global optimization: the GenSA package. The R Journal, 5, 13-28.
[53] Yang, M., and Stufken, J. (2012). Identifying locally optimal designs for nonlinear
models: a simple extension with profound consequences. The Annals of Statistics, 40,
1665-1681.
[54] Zhu, Z., Coster, D. C. and Beasley, L. R. (2003). Properties of a covariance matrix with
an application to D-optimal design. Electronic Journal of Linear Algebra, 10, 65-76.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code