Responsive image
博碩士論文 etd-0018116-085252 詳細資訊
Title page for etd-0018116-085252
論文名稱
Title
高壓氧治療經由維持海馬迴之腦源性神經滋養因子依賴性 神經新生以減緩一氧化碳中毒導致的遲發性記憶障礙
Hyperbaric Oxygen Therapy Alleviates Carbon Monoxide Poisoning–Induced Delayed Memory Impairment by Preserving Brain-Derived Neurotrophic Factor–Dependent Hippocampal Neurogenesis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-01-16
繳交日期
Date of Submission
2016-01-19
關鍵字
Keywords
神經新生、高壓氧治療、腦源性神經滋養因子、一氧化碳中毒、遲發性神經精神症候群
hyperbaric oxygen therapy, neurogenesis, carbon monoxide poisoning, brain-derived neurotrophic factor, delayed neuropsychiatric syndrome
統計
Statistics
本論文已被瀏覽 5706 次,被下載 749
The thesis/dissertation has been browsed 5706 times, has been downloaded 749 times.
中文摘要
背景:一氧化碳(CO)是因為含碳質材料的不完全燃燒產生的一種無色,無味的氣體。它經常被忽視或誤診,臨床上治療一氧化碳中毒常常是一個極大的挑戰並且存在許多爭議,如致病機轉, 治療方式等等,尤其是高壓氧治療。因為臨床上對於高壓氧治療在急性中毒後產生的遲發性神經系統後遺症是否有明確的療效仍然是有爭議的。
目的:驗證高壓氧治療是透過增加腦源性神經滋養因子而促進成年的海馬迴神經細胞新生,並進而改善急性一氧化碳中毒引發的遲發性認知功能損害的假設。
材料與方法:成年雄性Sprague-Dawley 大鼠體重介於250〜280公克,隨機分為五組:(1)非一氧化碳處理過的 (原生組) 對照組,(2)急性一氧化碳中毒,(3)急性一氧化碳中毒之後連續7日的高壓氧治療,(4)一氧化碳中毒後施予連續7日高壓氧治療並且經由側腦室輸注酪氨酸激酶受體乙蛋白(TrkB的-Fc)的嵌合體的Fc片段,和(5)急性一氧化碳中毒接著施予側腦室輸注腦源性神經滋養因子。急性一氧化碳中毒是由暴露大鼠於一氧化碳在2500 ppm中40分鐘,隨後一氧化碳增加到3000 ppm 持續20分鐘來進行 (共計一小時)。高壓氧治療(在2.5絕對大氣壓,100%氧氣治療60分鐘),在一氧化碳中毒後持續進行7天。腦內注射組則在一氧化碳中毒後第二天起經由所植入的滲透性微型泵將重組TrkB-Fc嵌合體或腦源性神經滋養因子持續注入側腦室達7天。一氧化碳中毒後將溴脫氧尿苷注入腹腔用以標記海馬迴的有絲分裂細胞。利用免疫組織化學染色或免疫螢光染色來標定溴脫氧尿苷和另外兩個成年神經標誌物,Ki-67和Doublecortin的在海馬迴的分佈情形。海馬迴中的腦源性神經滋養因子的量則利用酶聯免疫吸附測定進行評估。認知行為則是使用的八臂迷宮來評估。
測量和主要結果:急性一氧化碳中毒後在大鼠海馬迴的齒狀回顆粒下區可以發現的 DCX+細胞、Ki-67+細胞,和溴脫氧尿苷陽性細胞的數量明顯減少,意味著一氧化碳中毒會顯著抑制成年海馬迴神經細胞的新生及發育與成熟。這種由一氧化碳中毒引發的抑制會明顯地被早期高壓氧治療緩解。高壓氧治療也促進了海馬迴腦源性神經滋養因子的持續增長。急性一氧化碳中毒後利用重組TrkB-Fc嵌合體的腦室內注射來阻斷海馬迴腦源性神經滋養因子的訊息傳遞會顯著減弱高壓氧治療所帶來的保護作用;而腦源性神經滋養因子側腦室內注射用以模擬高壓氧的作用,則可以在急性一氧化碳中毒後依然保持神經新生的能力。此外,對於急性一氧化碳中毒所導致遲發性的認知功能損害,高壓氧治療則可以明顯地透過腦源性神經滋養因子依賴的方式改善認知功能障礙。
結論:早期高壓氧治療可透過維持海馬迴腦源性神經滋養因子含量增加成年神經細胞新生緩解急性一氧化碳中毒引發的遲發性記憶障礙。
Abstract
Background: Carbon monoxide (CO) is a colorless, odorless gas produced by incomplete combustion of carbonaceous material. Commonly overlooked or misdiagnosed, CO poisoning often presents a significant challenge, as treatment protocols, especially for hyperbaric oxygen therapy, remain controversial because of a paucity of definitive clinical studies in delayed neurological sequelae after acute poisoning.
Objective: To test the hypothesis that hyperbaric oxygen therapy ameliorates delayed cognitive impairment after acute CO poisoning by promoting neurogenesis through upregulating the brain-derived neurotrophic factor (BDNF) in the hippocampus.
Materials and methods: Adult male Sprague-Dawley rats weighted 250~280 gm were randomly divided into five groups: (1) non–CO-treated Naïve, (2) acute CO poisoning, (3) acute poisoning followed by 7-day hyperbaric oxygen treatment, (4) CO + hyperbaric oxygen with additional intracerebroventricular infusion of Fc fragment of tyrosine kinase receptor B protein (TrkB-Fc) chimera, and (5) acute CO poisoning followed by intracerebroventricular infusion of BDNF. Acute CO poisoning was achieved by exposing the rats to CO at 2,500 ppm for 40 minutes, followed by 3,000 ppm for 20 minutes. Hyperbaric oxygen therapy (at 2.5 atmospheres absolute with 100% oxygen for 60 min) was conducted during the first 7 days after CO poisoning. Recombinant human TrkB-Fc chimera or BDNF was infused into the lateral ventricle via the implanted osmotic mini-pump. For labeling of mitotic cells in the hippocampus, bromodeoxyuridine was injected into the peritoneal cavity. Distribution of bromodeoxyuridine and two additional adult neurogenesis markers, Ki-67 and doublecortin, in the hippocampus was evaluated by immunohistochemistry or immunofluorescence staining. Tissue level of BDNF was assessed by enzyme-linked immunosorbent assay. Cognitive behavior was evaluated by the use of eight-arm radial maze.
Measurements and Main Results: Acute CO poisoning significantly suppressed adult hippocampal neurogenesis evident by the reduction in number of bromodeoxyuridine-positive, Ki-67+, and doublecortin+ cells in the subgranular zone of the dentate gyrus. This suppression of adult neurogenesis by the CO poisoning was appreciably alleviated by early treatment of hyperbaric oxygen. The hyperbaric oxygen treatment also promoted a sustained increase in hippocampal BDNF level. Blockade of hippocampal BDNF signaling with intracerebroventricular infusion of recombinant human TrkB-Fc chimera significantly blunted the protection by the hyperbaric oxygen on hippocampal neurogenesis; whereas intracerebroventricular infusion of BDNF mimicked the action of hyperbaric oxygen and preserved hippocampal neurogenesis after acute CO poisoning. Furthermore, acute CO poisoning resulted in a delayed impairment of cognitive function. The hyperbaric oxygen treatment notably restored the cognitive impairment in a BDNF–dependent manner.
Conclusions: The early hyperbaric oxygen treatment may alleviate delayed memory impairment after acute CO poisoning by preserving adult neurogenesis via an increase in hippocampal BDNF content.
目次 Table of Contents
目錄
論文審定書…………………………………………………………i
致謝….…………………………………………………………….. ii
中文摘要…….……………….……………………………………..iv
Abstract….…………………………..………………………….......vi
目錄....................................................................................................ix
Chapter 1 Introduction………………………………………………… 1
1.1 Carbon monoxide poisoning……………………………….. 2
1.2 Neurotoxicology and delayed neuropsychiatric syndrome of
carbon monoxide……………………………………………
4
1.3 Role of hyperbaric oxygen in the treatment of carbon
monoxide poisoning………………………………………...
7
1.4 Adult neurogenesis and hyperbaric oxygen therapy….......... 9
1.5 Hippocampal neurogenesis, brain-derived neurotrophic
factor and memory …………...………………………….....
11
Chapter 2 Rationale…………………………………………………… 14
Chapter 3 Study Design……………………………………………….. 17
Chapter 4 Materials and Methods…………………………................... 21
Chapter 5 Results……………………………………………………… 29
Chapter 6 Discussion……………………………………….................. 34
Chapter 7 Conclusion and Future Work………………………………. 46
Chapter 8 Figures……………………………………………………… 53
References………………………………………………...... 62
Appendix…………………………………………………… 73
參考文獻 References
1. Hampson NB, Weaver LK. Carbon monoxide poisoning: a new incidence for an old disease. Undersea and Hyperbaric Medicine 2007; 34: 163-168
2. Weaver LK. Clinical practice. Carbon monoxide poisoning. New England Journal of Medicine 2009; 360: 1217-1225
3. Ku HL, Yang KC, Lee YC, Lee MB, Chou YH. Predictors of carbon monoxide poisoning-induced delayed neuropsychological sequelae. General Hospital Psychiatry 2010; 32: 310-314
4. Kudo K, Otsuka K, Yagi J, Sanjo K, Koizumi N, Koeda A, Umetsu MY, Yoshioka Y, Mizugai A, Mita T, Shiga Y, Koizumi F, Nakamura H, Sakai A. Predictors for delayed encephalopathy following acute carbon monoxide poisoning. BMC Emergency Medicine 2014; 14: 3
5. Hardy KR, Thom SR. Pathophysiology and treatment of carbon monoxide poisoning. Clinical Toxicology 1994; 32: 613-629
6. Zhang J, Piantadosi CA. Mitochondrial oxidative stress after carbon monoxide hypoxia in the rat brain. Journal of Clinical Investigation 1992; 90: 1193
7. Raub JA, Benignus VA. Carbon monoxide and the nervous system. Neuroscience and Biobehavioral Reviews 2002; 26: 925-940
8. Akyol S, Erdogan S, Idiz N, Celik S, Kaya M, Ucar F, Dane S, Akyol O. The role of reactive oxygen species and oxidative stress in carbon monoxide toxicity: An in-depth analysis. Redox Report 2014; 19: 180-189
9. Piantadosi CA, Zhang J, Levin ED, Folz RJ, Schmechel DE. Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Experimental Neurology 1997; 147: 103-114
10. Thom SR, Bhopale VM, Han S-T, Clark JM, Hardy KR. Intravascular neutrophil activation due to carbon monoxide poisoning. American Journal of Respiratory and Critical Care Medicine 2006; 174: 1239-1248
11. Thom SR. Dehydrogenase conversion to oxidase and lipid peroxidation in brain after carbon monoxide poisoning. Journal of Applied Physiololgy (1985) 1992; 73: 1584-1589
12. Thom SR, Bhopale VM, Fisher D, Zhang J, Gimotty P. Delayed neuropathology after carbon monoxide poisoning is immune-mediated. Proceedings of the National Academy of Sciences of the United States of America 2004; 101: 13660-13665
13. Choi IS. Delayed neurologic sequelae in carbon monoxide intoxication. Archives of Neurology 1983; 40: 433-435
14. Kwon O, Chung S, Ha Y, Yoo I, Kim S. Delayed postanoxic encephalopathy after carbon monoxide poisoning. Emergency Medicine Journal 2004; 21: 250-251
15. Weaver LK, Valentine KJ, Hopkins RO. Carbon monoxide poisoning: risk factors for cognitive sequelae and the role of hyperbaric oxygen. American Journal of Respiratory and Critical Care Medicine 2007; 176: 491-497
16. Thom SR, Taber RL, Mendiguren, II, Clark JM, Hardy KR, Fisher AB. Delayed neuropsychologic sequelae after carbon monoxide poisoning: prevention by treatment with hyperbaric oxygen. Annals of Emergency Medicine 1995; 25: 474-480
17. Annane D, Chadda K, Gajdos P, Jars-Guincestre MC, Chevret S, Raphael JC. Hyperbaric oxygen therapy for acute domestic carbon monoxide poisoning: two randomized controlled trials. Intensive Care Medicine 2011; 37: 486-492
18. Ernst A, Zibrak JD. Carbon monoxide poisoning. New England Journal of Medicine 1998; 339: 1603-1608
19. Sykes OT, Walker E. The neurotoxicology of carbon monoxide–Historical perspective and review. Cortex 2015:
20. Pepe G, Castelli M, Nazerian P, Vanni S, Del Panta M, Gambassi F, Botti P, Missanelli A, Grifoni S. Delayed neuropsychological sequelae after carbon monoxide poisoning: predictive risk factors in the Emergency Department. A retrospective study. Scandivan Journal of Trauma Resuscication and Emergency Medicine 2011; 19: 16
21. Camporesi EM. Hyperbaric Oxygen Therapy: A Committee Report. Undersea and Hyperbaric Medical Society. Inc Kensigton, Maryland 1996:
22. Zhang JH, Lo T, Mychaskiw G, Colohan A. Mechanisms of hyperbaric oxygen and neuroprotection in stroke. Pathophysiology 2005; 12: 63-77
23. Mu J, Ostrowski RP, Soejima Y, Rolland WB, Krafft PR, Tang J, Zhang JH. Delayed hyperbaric oxygen therapy induces cell proliferation through stabilization of cAMP responsive element binding protein in the rat model of MCAo-induced ischemic brain injury. Neurobiology of Disease 2013; 51: 133-143
24. Buckley NA, Juurlink DN, Isbister G, Bennett MH, Lavonas EJ. Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database Systemic Review 2011: CD002041
25. Gilmer B, Kilkenny J, Tomaszewski C, Watts JA. Hyperbaric oxygen does not prevent neurologic sequelae after carbon monoxide poisoning. Academic Emergency Medicine 2002; 9: 1-8
26. Thom SR, Bhopale VM, Fisher D. Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity. Toxicology and Applied Pharmacology 2006; 213: 152-159
27. Birmingham CM, Hoffman RS. Hyperbaric oxygen therapy for acute domestic carbon monoxide poisoning: two randomized controlled trials. Intensive Care Medicine 2011; 37: 1218; author reply 1219
28. Stoller KP. Hyperbaric oxygen and carbon monoxide poisoning: a critical review. Neurological Research 2007; 29: 146-155
29. Chiew AL, Buckley NA. Carbon monoxide poisoning in the 21st century. Critical Care 2014; 18: 221
30. Golden ZL, Neubauer R, Golden CJ, Greene L, Marsh J, Mleko A. Improvement in cerebral metabolism in chronic brain injury after hyperbaric oxygen therapy. International Journal of Neuroscience 2002; 112: 119-131
31. Badr AE, Yin W, Mychaskiw G, Zhang JH. Effect of hyperbaric oxygen on striatal metabolites: a microdialysis study in awake freely moving rats after MCA occlusion. Brain Research 2001; 916: 85-90
32. Zhang Y, Yang Y, Tang H, Sun W, Xiong X, Smerin D, Liu J. Hyperbaric oxygen therapy ameliorates local brain metabolism, brain edema and inflammatory response in a blast-induced traumatic brain injury model in rabbits. Neurochemical Research 2014; 39: 950-960
33. Mink RB, Dutka AJ. Hyperbaric oxygen after global cerebral ischemia in rabbits reduces brain vascular permeability and blood flow. Stroke 1995; 26: 2307-2312
34. Rockswold SB, Rockswold GL, Zaun DA, Liu J. A prospective, randomized phase II clinical trial to evaluate the effect of combined hyperbaric and normobaric hyperoxia on cerebral metabolism, intracranial pressure, oxygen toxicity, and clinical outcome in severe traumatic brain injury: clinical article. Journal of Neurosurgery 2013; 118: 1317-1328
35. Lin K-C, Niu K-C, Tsai K-J, Kuo J-R, Wang L-C, Chio C-C, Chang C-P. Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury. Journal of Trauma and Acute Care Surgery 2012; 72: 650-659
36. Hampson NB, Piantadosi CA, Thom SR, Weaver LK. Practice recommendations in the diagnosis, management, and prevention of carbon monoxide poisoning. American Journal of Respiratory and Critical Care Medicine 2012; 186: 1095-1101
37. Jurič DM, Finderle Ž, Šuput D, Brvar M. The effectiveness of oxygen therapy in carbon monoxide poisoning is pressure-and time-dependent: A study on cultured astrocytes. Toxicology Letters 2015; 233: 16-23
38. Xiong L, Zhu Z, Dong H, Hu W, Hou L, Chen S. Hyperbaric oxygen preconditioning induces neuroprotection against ischemia in transient not permanent middle cerebral artery occlusion rat model. Chinese Medical Journal 2000; 113: 836-839
39. Lee Y-S, Chio C-C, Chang C-P, Wang L-C, Chiang P-M, Niu K-C, Tsai K-J. Long course hyperbaric oxygen stimulates neurogenesis and attenuates inflammation after ischemic stroke. Mediators of Inflammation 2013; 2013:
40. Liu W, Liu K, Tao H, Chen C, Zhang JH, Sun X. Hyperoxia preconditioning: the next frontier in neurology? Neurological Research 2012; 34: 415-421
41. Matchett GA, Martin RD, Zhang JH. Hyperbaric oxygen therapy and cerebral ischemia: neuroprotective mechanisms. Neurological Research 2009; 31: 114-121
42. Mu J, Krafft PR, Zhang JH. Hyperbaric oxygen therapy promotes neurogenesis: where do we stand? Medical Gas Research 2011; 1: 14
43. Alvarez-Buylla A, Lim DA. For the long run: maintaining germinal niches in the adult brain. Neuron 2004; 41: 683-686
44. Rakic P. Limits of neurogenesis in primates. Science 1985; 227: 1054-1056
45. Overall RW, Paszkowski-Rogacz M, Kempermann G. The mammalian adult neurogenesis gene ontology (MANGO) provides a structural framework for published information on genes regulating adult hippocampal neurogenesis. PLoS One 2012; 7: e48527
46. Liu X-H, Yan H, Xu M, Zhao Y-L, Li L-M, Zhou X-H, Wang M-X, Ma L. Hyperbaric oxygenation reduces long-term brain injury and ameliorates behavioral function by suppression of apoptosis in a rat model of neonatal hypoxia–ischemia. Neurochemistry International 2013; 62: 922-930
47. Zhang T, Yang QW, Wang SN, Wang JZ, Wang Q, Wang Y, Luo YJ. Hyperbaric oxygen therapy improves neurogenesis and brain blood supply in piriform cortex in rats with vascular dementia. Brain Injury 2010; 24: 1350-1357
48. Efrati S, Ben-Jacob E. Reflections on the neurotherapeutic effects of hyperbaric oxygen. Expert Review of Neurotherapeutics 2014; 14: 233-236
49. Yang YJ, Wang XL, Yu XH, Wang X, Xie M, Liu CT. Hyperbaric oxygen induces endogenous neural stem cells to proliferate and differentiate in hypoxic-ischemic brain damage in neonatal rats. Undersea and Hyperbaric Medicine 2008; 35: 113-129
50. Zádori A, Ágoston VA, Demeter K, Hádinger N, Várady L, Kőhídi T, Gőbl A, Nagy Z, Madarász E. Survival and differentiation of neuroectodermal cells with stem cell properties at different oxygen levels. Experimental Neurology 2011; 227: 136-148
51. Liu S, Shen G, Deng S, Wang X, Wu Q, Guo A. Hyperbaric oxygen therapy improves cognitive functioning after brain injury. Neural Regeneration Research 2013; 8: 3334
52. Efrati S, Fishlev G, Bechor Y, Volkov O, Bergan J, Kliakhandler K, Kamiager I, Gal N, Friedman M, Ben-Jacob E. Hyperbaric oxygen induces late neuroplasticity in post stroke patients--randomized, prospective trial. PLoS One 2013; 8: e53716
53. Kraitsy K, Uecal M, Grossauer S, Bruckmann L, Pfleger F, Ropele S, Fazekas F, Gruenbacher G, Patz S, Absenger M. Repetitive long-term hyperbaric oxygen treatment (HBOT) administered after experimental traumatic brain injury in rats induces significant remyelination and a recovery of sensorimotor function. PLoS One 2014; 9: e97750
54. Lin H, Chang C-P, Lin H-J, Lin M-T, Tsai C-C. Attenuating brain edema, hippocampal oxidative stress, and cognitive dysfunction in rats using hyperbaric oxygen preconditioning during simulated high-altitude exposure. Journal of Trauma and Acute Care Surgery 2012; 72: 1220-1227
55. Schellart NA, Reits D, van der Kleij AJ, Stalpers LJ. Hyperbaric oxygen treatment improved neurophysiologic performance in brain tumor patients after neurosurgery and radiotherapy. Cancer 2011; 117: 3434-3444
56. Hopkins RO, Woon FLM. Neuroimaging, cognitive, and neurobehavioral outcomes following carbon monoxide poisoning. Behavioral and Cognitive Neuroscience Reviews 2006; 5: 141-155
57. Gale SD, Hopkins RO. Effects of hypoxia on the brain: neuroimaging and neuropsychological findings following carbon monoxide poisoning and obstructive sleep apnea. Journal of the International Neuropsychological Society 2004; 10: 60-71
58. Hurwitz TA, Lee WT. Casebook of Neuropsychiatry. 1st ed. Arlington: American Psychiatric Association Publishing; 2013: pp.99-104
59. Tachibana K, Hashimoto T, Takita K, Ito R, Kato R, Morimoto Y. Neonatal exposure to high concentration of carbon dioxide produces persistent learning deficits with impaired hippocampal synaptic plasticity. Brain Research 2013; 1507: 83-90
60. Carleton A, Petreanu LT, Lansford R, Alvarez-Buylla A, Lledo P-M. Becoming a new neuron in the adult olfactory bulb. Nature Neuroscience 2003; 6: 507-518
61. Carlén M, Cassidy RM, Brismar H, Smith GA, Enquist LW, Frisén J. Functional integration of adult-born neurons. Current Biology 2002; 12: 606-608
62. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature 2002; 415: 1030-1034
63. Binder DK, Scharfman HE. Mini review. Growth Factors 2004; 22: 123-131
64. Waterhouse EG, An JJ, Orefice LL, Baydyuk M, Liao G-Y, Zheng K, Lu B, Xu B. BDNF promotes differentiation and maturation of adult-born neurons through GABAergic transmission. The Journal of Neuroscience 2012; 32: 14318-14330
65. McAllister AK, Katz LC, Lo DC. Neurotrophins and synaptic plasticity. Annual Review of Neuroscience 1999; 22: 295-318
66. Bramham CR, Messaoudi E. BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Progress in Neurobiology 2005; 76: 99-125
67. Park H, Poo M-m. Neurotrophin regulation of neural circuit development and function. Nature Reviews Neuroscience 2013; 14: 7-23
68. Bekinschtein P, Kent BA, Oomen CA, Clemenson GD, Gage FH, Saksida LM, Bussey TJ. Brain‐derived neurotrophic factor interacts with adult‐born immature cells in the dentate gyrus during consolidation of overlapping memories. Hippocampus 2014:
69. Bekinschtein P, Cammarota M, Medina JH. BDNF and memory processing. Neuropharmacology 2014; 76 Part C: 677-683
70. Novkovic T, Mittmann T, Manahan‐Vaughan D. BDNF contributes to the facilitation of hippocampal synaptic plasticity and learning enabled by environmental enrichment. Hippocampus 2014:
71. Edelmann E, Leßmann V, Brigadski T. Pre-and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 2014; 76: 610-627
72. Bekinschtein P, Cammarota M, Medina JH. BDNF and memory processing. Neuropharmacology 2014; 76: 677-683
73. Pang PT, Teng HK, Zaitsev E, Woo NT, Sakata K, Zhen S, Teng KK, Yung W-H, Hempstead BL, Lu B. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 2004; 306: 487-491
74. Kang H, Welcher AA, Shelton D, Schuman EM. Neurotrophins and time: different roles for TrkB signaling in hippocampal long-term potentiation. Neuron 1997; 19: 653-664
75. Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH. Persistence of long-term memory storage requires a late protein synthesis-and BDNF-dependent phase in the hippocampus. Neuron 2007; 53: 261-277
76. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science 2006; 313: 1093-1097
77. Bekinschtein P, Kent BA, Oomen CA, Clemenson GD, Gage FH, Saksida LM, Bussey TJ. BDNF in the dentate gyrus is required for consolidation of "pattern-separated" memories. Cell Reports 2013; 5: 759-768
78. Scharfman H, Goodman J, Macleod A, Phani S, Antonelli C, Croll S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Experimental Neurology 2005; 192: 348-356
79. Clemenson GD, Deng W, Gage FH. Environmental enrichment and neurogenesis: from mice to humans. Current Opinion in Behavioral Sciences 2015; 4: 56-62
80. Chan SH, Wu KL, Chang AY, Tai MH, Chan JY. Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Hypertension 2009; 53: 217-227
81. Chan SH, Wang LL, Tseng HL, Chan JY. Upregulation of AT1 receptor gene on activation of protein kinase Cbeta/nicotinamide adenine dinucleotide diphosphate oxidase/ERK1/2/c-fos signaling cascade mediates long-term pressor effect of angiotensin II in rostral ventrolateral medulla. Journal of Hypertension 2007; 25: 1845-1861
82. Wu CW, Chen YC, Yu L, Chen HI, Jen CJ, Huang AM, Tsai HJ, Chang YT, Kuo YM. Treadmill exercise counteracts the suppressive effects of peripheral lipopolysaccharide on hippocampal neurogenesis and learning and memory. Journal of Neurochemistry 2007; 103: 2471-2481
83. Wu CW, Chang YT, Yu L, Chen HI, Jen CJ, Wu SY, Lo CP, Kuo YM. Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. Journal of Applied Physiology 2008; 105: 1585-1594
84. Yang YN, Lin CS, Yang CH, Lai YH, Wu PL, Yang SN. Neurogenesis Recovery Induced by Granulocyte-colony Stimulating Factor in Neonatal Rat Brain After Perinatal Hypoxia. Pediatrics and Neonatology 2013; 54: 380-388
85. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn A-M, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nature Medicine 1998; 4: 1313-1317
86. Christie BR, Cameron HA. Neurogenesis in the adult hippocampus. Hippocampus 2006; 16: 199-207
87. Telerman A, Lapter S, Sharabi A, Zinger H, Mozes E. Induction of hippocampal neurogenesis by a tolerogenic peptide that ameliorates lupus manifestations. Journal of Neuroimmunology 2011; 232: 151-157
88. Hsiao YH, Hung HC, Chen SH, Gean PW. Social interaction rescues memory deficit in an animal model of Alzheimer's disease by increasing BDNF-dependent hippocampal neurogenesis. Journal of Neuroscience 2014; 34: 16207-16219
89. González MI. Brain-derived neurotrophic factor promotes gephyrin protein expression and GABA A receptor clustering in immature cultured hippocampal cells. Neurochemistry International 2014; 72: 14-21
90. Weaver LK, Hopkins RO, Chan KJ, Churchill S, Elliott CG, Clemmer TP, Orme JF, Jr., Thomas FO, Morris AH. Hyperbaric oxygen for acute carbon monoxide poisoning. New England Journal of Medicine 2002; 347: 1057-1067
91. Blaiss CA, Yu TS, Zhang G, Chen J, Dimchev G, Parada LF, Powell CM, Kernie SG. Temporally specified genetic ablation of neurogenesis impairs cognitive recovery after traumatic brain injury. Journal of Neuroscience 2011; 31: 4906-4916
92. Thal SC, Timaru-Kast R, Wilde F, Merk P, Johnson F, Frauenknecht K, Sebastiani A, Sommer C, Staib-Lasarzik I, Werner C, Engelhard K. Propofol impairs neurogenesis and neurologic recovery and increases mortality rate in adult rats after traumatic brain injury. Critical Care Medicine 2014; 42: 129-141
93. Ochi S, Abe M, Li C, Mori Y, Ishimaru T, Yoshino Y, Yamazaki K, Mori T, Fukuhara R, Tanimukai S. The nicotinic cholinergic system is affected in rats with delayed carbon monoxide encephalopathy. Neuroscience Letters 2014; 569: 33-37
94. Wang P, Zeng T, Zhang CL, Gao XC, Liu Z, Xie KQ, Chi ZF. Lipid peroxidation was involved in the memory impairment of carbon monoxide-induced delayed neuron damage. Neurochemical Research 2009; 34: 1293-1298
95. Garrabou G, Inoriza J, Morén C, Oliu G, Miró Ò, Martí M, Cardellach F. Mitochondrial injury in human acute carbon monoxide poisoning: the effect of oxygen treatment. Journal of Environmental Science and Health, Part C 2011; 29: 32-51
96. Beppu T, Fujiwara S, Nishimoto H, Koeda A, Narumi S, Mori K, Ogasawara K, Sasaki M. Fractional anisotropy in the centrum semiovale as a quantitative indicator of cerebral white matter damage in the subacute phase in patients with carbon monoxide poisoning: correlation with the concentration of myelin basic protein in cerebrospinal fluid. Journal of Neurology 2012; 259: 1698-1705
97. Thom SR, Bhopale VM, Fisher D. Hyperbaric oxygen reduces delayed immune-mediated neuropathology in experimental carbon monoxide toxicity. Toxicology and Applied Pharmacology 2006; 213: 152-159
98. Watanabe S, Matsuo H, Kobayashi Y, Satoh Y, Fujita M, Nakayama A, Aizawa Y, Shinomiya N, Suzuki S. Transient degradation of myelin basic protein in the rat hippocampus following acute carbon monoxide poisoning. Neuroscience Research 2010; 68: 232-240
99. Thom SR. Carbon monoxide pathophysiology and treatment. In, Physiology and Medicine of Hyperbaric Oxygen Therapy. 1st ed. Philadelphia: Elsevier Health Scineces; 2008: pp.321-347
100. Weaver LK. Hyperbaric oxygen therapy for carbon monoxide poisoning. Undersea and Hyperbaric Medicine 2013; 41: 339-354
101. Aimone JB, Wiles J, Gage FH. Computational influence of adult neurogenesis on memory encoding. Neuron 2009; 61: 187-202
102. Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Reviews Neuroscience 2010; 11: 339-350
103. Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S. Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 2008; 3: 289-300
104. Suh H, Deng W, Gage FH. Signaling in adult neurogenesis. Annual Review of Cell and Developmental Biology 2009; 25: 253-275
105. Zhang K, Zhu L, Fan M. Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Frontiers in Molecular Neuroscience 2011; 4:
106. Bernd P. The role of neurotrophins during early development. Gene Expression 2008; 14: 241-250
107. Lipsky RH, Marini AM. Brain‐derived neurotrophic factor in neuronal survival and behavior‐related plasticity. Annals of the New York Academy of Sciences 2007; 1122: 130-143
108. Gómez-Palacio-Schjetnan A, Escobar ML. Neurotrophins and synaptic plasticity. In, Neurogenesis and neural plasticity. Berlin: Springer; 2013: pp.117-136
109. Castrén E, Rantamäki T. The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Developmental Neurobiology 2010; 70: 289-297
110. Conner JM, Lauterborn JC, Yan Q, Gall CM, Varon S. Distribution of brain-derived neurotrophic factor (BDNF) protein and mRNA in the normal adult rat CNS: evidence for anterograde axonal transport. The Journal of Neuroscience 1997; 17: 2295-2313
111. Mizuno M, Yamada K, Olariu A, Nawa H, Nabeshima T. Involvement of ( in spatial memory formation and maintenance in a radial arm maze test in rats. The Journal of Neuroscience 2000; 20: 7116-7121
112. Hirata T, Cui YJ, Funakoshi T, Mizukami Y, Ishikawa Y-i, Shibasaki F, Matsumoto M, Sakabe T. The temporal profile of genomic responses and protein synthesis in ischemic tolerance of the rat brain induced by repeated hyperbaric oxygen. Brain Research 2007; 1130: 214-222
113. Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH. BDNF is essential to promote persistence of long-term memory storage. Proceedings of the National Academy of Sciences of the United States of America 2008; 105: 2711-2716
114. Alonso M, Vianna MR, Depino AM, Mello e Souza T, Pereira P, Szapiro G, Viola H, Pitossi F, Izquierdo I, Medina JH. BDNF–triggered events in the rat hippocampus are required for both short‐and long‐term memory formation. Hippocampus 2002; 12: 551-560
115. Korte M. A Protoplasmic Kiss to Remember. Science 2008; 319: 1627-1628
116. Tanaka J-i, Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC, Kasai H. Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 2008; 319: 1683-1687
117. G Argandona E, Bengoetxea H, Ortuzar N, Bulnes S, Rico-Barrio I, Vicente Lafuente J. Vascular endothelial growth factor: adaptive changes in the neuroglialvascular unit. Current Neurovascular Research 2012; 9: 72-81
118. Guo S, Kim WJ, Lok J, Lee SR, Besancon E, Luo BH, Stins MF, Wang X, Dedhar S, Lo EH. Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proceedings of the National Academy of Sciences of the United States of America 2008; 105: 7582-7587
119. Clelland C, Choi M, Romberg C, Clemenson G, Fragniere A, Tyers P, Jessberger S, Saksida L, Barker R, Gage F. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 2009; 325: 210-213
120. Denny CA, Kheirbek MA, Alba EL, Tanaka KF, Brachman RA, Laughman KB, Tomm NK, Turi GF, Losonczy A, Hen R. Hippocampal memory traces are differentially modulated by experience, time, and adult neurogenesis. Neuron 2014; 83: 189-201
121. Olton DS, Collison C, Werz MA. Spatial memory and radial arm maze performance of rats. Learning and Motivation 1977; 8: 289-314
122. Olton DS, Paras BC. Spatial memory and hippocampal function. Neuropsychologia 1979; 17: 669-682
123. Ikeda T, Mishima K, Yoshikawa T, Iwasaki K, Fujiwara M, Xia YX, Ikenoue T. Selective and long-term learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behavioural Brain Research 2001; 118: 17-25
124. Hunt PR, Aggleton JP. An examination of the spatial working memory deficit following neurotoxic medial dorsal thalamic lesions in rats. Behavioural Brain Research 1998; 97: 129-141
125. Floresco SB, Seamans JK, Phillips AG. Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. The Journal of Neuroscience 1997; 17: 1880-1890
126. Zagami AS, Lethlean AK, Mellick R. Delayed neurological deterioration following carbon monoxide poisoning: MRI findings. Journal of Neurology 1993; 240: 113-116
127. Prockop LD, Chichkova RI. Carbon monoxide intoxication: an updated review. Journal of the Neurological Sciences 2007; 262: 122-130
128. Hsiao C-L, Kuo H-C, Huang C-C. Delayed encephalopathy after carbon monoxide intoxication-long-term prognosis and correlation of clinical manifestations and neuroimages. Acta Neurologica Taiwanica 2004; 13: 64-70
129. Mundy ME, Downing PE, Dwyer DM, Honey RC, Graham KS. A critical role for the hippocampus and perirhinal cortex in perceptual learning of scenes and faces: complementary findings from amnesia and FMRI. Journal of Neuroscience 2013; 33: 10490-10502
130. Park YM, Kim YS. Secondary mania in a patient with delayed anoxic encephalopathy after carbon monoxide intoxication caused by a suicide attempt. General Hospital Psychiatry 2014; 36: 125 e123-124
131. Beppu T. The role of MR imaging in assessment of brain damage from carbon monoxide poisoning: a review of the literature. American Journal of Neuroradiology 2014; 35: 625-631
132. Nowakowski RS, Hayes NL. Stem cells: the promises and pitfalls. Neuropsychopharmacology 2001; 25: 799-804
133. Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Research Reviews 2007; 53: 198-214
134. Duque A, Rakic P. Different effects of bromodeoxyuridine and [3H] thymidine incorporation into DNA on cell proliferation, position, and fate. The Journal of Neuroscience 2011; 31: 15205-15217
135. Sauerzweig S, Baldauf K, Braun H, Reymann KG. Time-dependent segmentation of BrdU-signal leads to late detection problems in studies using BrdU as cell label or proliferation marker. Journal of Neuroscience Methods 2009; 177: 149-159
136. Olson AK, Eadie BD, Ernst C, Christie BR. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus 2006; 16: 250-260
137. Panchision DM. The role of oxygen in regulating neural stem cells in development and disease. Journal of Cellular Physiology 2009; 220: 562-568
138. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 2008; 132: 645-660
139. Ge S, Yang C-h, Hsu K-s, Ming G-l, Song H. A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain. Neuron 2007; 54: 559-566
140. Kim WR, Christian K, Ming G-L, Song H. Time-dependent involvement of adult-born dentate granule cells in behavior. Behavioural Brain Research 2012; 227: 470-479
141. Leuner B, Gould E, Shors TJ. Is there a link between adult neurogenesis and learning? Hippocampus 2006; 16: 216-224
142. Shors TJ, Townsend DA, Zhao M, Kozorovitskiy Y, Gould E. Neurogenesis may relate to some
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code