Responsive image
博碩士論文 etd-0018117-171908 詳細資訊
Title page for etd-0018117-171908
論文名稱
Title
以醇-水二元溶液做探針對質子交換膜Nafion117的結構和形態之固態核磁共振研究
Solid State Nuclear Magnetic Resonance Studies of the Structure and Morphology of Proton Exchange Membrane Nafion 117 Using Alcohol-Water Binary Solutions as Probes.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
131
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-11
繳交日期
Date of Submission
2017-01-23
關鍵字
Keywords
甲醇、燃料電池、化學位移、NMR、Nafion 117、鬆弛
Fuel Cell, Nafion 117, Chemical Shift, Relaxation, NMR, Methanol
統計
Statistics
本論文已被瀏覽 5686 次,被下載 171
The thesis/dissertation has been browsed 5686 times, has been downloaded 171 times.
中文摘要
直接甲醇燃料電池(DMFCs)是最具潛力的替代能源,不過,必須克服其中兩大阻礙,即甲醇的竄透現象以及催化劑所產生的毒性。當甲醇從陽極竄透至陰極時,DMFCs部分轉換效能喪失,甚至竄透的甲醇有可能會引發聚合物熱降解反應而導致電池崩壞裂解的結果。因此,迄今仍然不斷地試圖解決如何減緩甲醇的竄透效應,例如:增加質子交換膜的厚度以及當量或是改良離聚物和催化劑的組成,但上述這些方法引發質子交換膜導電度或耐受度下降。基於這些原因,DMFCs目前僅適用於非常低濃度的甲醇水溶液(~3 % W/W, 1.0 M),大幅限制燃料電池的能量密度。為了解決甲醇竄透以及膨潤的問題,必須對甲醇與Nafion之間的交互作用有更細緻的科學認知。本工作以甲醇水溶液作為主要探針,再藉由比較不同濃度的乙醇和乙二醇水溶液與之相互探討,有助於了解Nafion膜內的結構形態對於不同醇類分子竄透現象之影響。
本工作配製五種不同濃度(莫爾分率χalcohol =0.05、0.2、0.4、0.6、0.8)的甲醇、乙醇、丙醇與乙二醇水溶液,作為Nafion的膨潤溶劑。利用固態NMR光譜儀測量不同方位(與主磁場B0之相對方位,定義於3.2章中)下的一維氫譜與縱向鬆弛時間T1,化學位移可提供分子微觀尺度上的結構變化資訊;鬆弛則可提供分子的動態(轉動)資訊。藉由這三種醇的化學位移與膜的取向之間的關係得知,Nafion膜內存在近似單晶的液晶結構,證明膜內平行孔道的存在。我們發現,Nafion中的平行水通道之大小與幾何構型在醇類膨潤後發生了顯著的改變,且與醇的分子大小及極性有關。我們也發現其縱向鬆弛速率之數據告訴我們不同醇類的竄透效果所導致Nafion膜內的孔洞及平行水通道構型的大小具有一致性的相關,這些結果表明了Nafion內部形態及微觀結構的資訊,也揭示出Nafion117、H2O、醇類之間相互作用之影響。
Abstract
To understand the detrimental effects of methanol crossing on the performance of the direct methanol fuel cell, 1H NMR spectroscopy of the aqueous solutions of methanol, ethanol and ethylene glycol permeated proton exchange membrane (PEM) Nafion was performed. It was found that the chemical shifts depend on the orientation of the membrane and change with the concentration of alcohol. A number of surprising and interesting phenomena were observed such as the size dependence of swelling and special uniformity of alcohol aqueous solutions in Nafion. Based on the NMR spectra and relaxation data of methanol, supported by the results from other alcohols such as ethanol and ethylene glycol, it is concluded that the orientation of the parallel water channels in Nafion is changed by methanol. The physical chemistry mechanism of the phenomenon and its connection to the affection of methanol on PEM performance are discussed.
In this work, solid state NMR is employed to investigate the behavior of Nafion-water-methanol system to build a better understanding of methanol crossover in fuel cells, a compelling challenge for fuel cell industry. The chemical shift and the relaxation data under varying concentrations of the aqueous solutions of methanol, ethanol, and ethylene glycol in Nafion samples differently oriented in the magnetic field of NMR spectrometer, have been measured. Many novel and interesting results have been obtained. For instances, it is found that degree of swelling of Nafion increases in the presence of alcohol; the differences between the alcohols in bulk and in Nafion are evident; the existence of the parallel water channels in Nafion is directly observable from the orientation-dependence of chemical shift and relaxation rates. The relationship between chemical shift and sample orientation has been explained theoretically and is supported with numerical simulations. The results of this work help us to construct a better understanding of the behavior of Nafion-water-alcohol systems and the microstructure, morphology and dynamics of Nafion, paving way to answering the more challenging questions such as prevention of alcohol crossover and optimization of PEM or other functional membranes.
目次 Table of Contents
目錄
摘要 iv
Abstract v
目錄 vii
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2 燃料電池發展簡介 4
1.3 質子交換膜Nafion介紹 9
1.4 醇類對於質子傳導膜產生膨潤之現象 11
1.5 研究動機 13
第二章 核磁共振簡介 14
2.1 核磁共振基本原理 14
2.2 NMR中的主要交互作用 18
2.2.1 Zeeman作用 20
2.2.2 化學位移(Chemical Shift)交互作用 21
2.2.3 偶極-偶極交互作用力(Dipole-Dipole interaction) 24
2.2.4 J-偶合(J-coupling) 25
2.3 NMR鬆弛(Relaxation) 26
2.3.1 縱向鬆弛(Longitudinal relaxation) 27
2.3.2 橫向鬆弛(Transverse relaxation) 30
2.3.3 轉動擴散活化能 32
第三章 實驗部分 33
3.1 實驗材料及藥品 33
3.2 樣品前處理及藥品配製 33
3.3 實驗儀器設備 35
3.4 實驗參數設置 35
第四章 結果與討論 38
4.1 Bulk體系甲醇、乙醇、丙醇及乙二醇水溶液一維1H NMR光譜 38
4.2 甲醇水溶液吸附於Nafion的膨潤研究 44
4.3 乙醇水溶液吸附於Nafion的膨潤研究 54
4.4 丙醇與乙二醇水溶液吸附於Nafion的膨潤研究 62
4.5 1H NMR化學位移之多角度分析 74
4.6 三種醇-水系統吸附於Nafion的薄膜資訊 96
參考文獻 102
Support information 109
參考文獻 References
參考文獻
1. Wand, G., Fuel cell history, Part 2. fuel cell today 2007.
2. Wang, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C., A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy 2011, 88 (4), 981-1007.
3. Devanathan, R., Recent developments in proton exchange membranes for fuel cells. Energy & Environmental Science 2008, 1 (1), 101-119.
4. Zerbinati, O.; Mardan, A.; Richter, M. M., A direct methanol fuel cell. J. Chem. Educ 2002, 79 (7), 829.
5. Shimizu, K.; Wang, J. S.; Wai, C. M., Application of Green Chemistry Techniques to Prepare Electrocatalysts for Direct Methanol Fuel Cells†. The Journal of Physical Chemistry A 2009, 114 (11), 3956-3961.
6. Kleiner, K., Assault on batteries. Nature 2006, 441 (7097), 1046-1047.
7. Paganin, V.; Sitta, E.; Iwasita, T.; Vielstich, W., Methanol crossover effect on the cathode potential of a direct PEM fuel cell. Journal of Applied Electrochemistry 2005, 35 (12), 1239-1243.
8. Heinzel, A.; Barragan, V., A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources 1999, 84 (1), 70-74.
9. Scott, K.; Taama, W.; Argyropoulos, P.; Sundmacher, K., The impact of mass transport and methanol crossover on the direct methanol fuel cell. Journal of Power Sources 1999, 83 (1), 204-216.
10. Haubold, H.-G.; Vad, T.; Jungbluth, H.; Hiller, P., Nano structure of NAFION: a SAXS study. Electrochimica Acta 2001, 46 (10), 1559-1563.
11. Mauritz, K. A.; Moore, R. B., State of understanding of Nafion. Chemical reviews 2004, 104 (10), 4535-4586.
12. Schmidt-Rohr, K.; Chen, Q., Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nature materials 2008, 7 (1), 75-83.
13. Agmon, N., The grotthuss mechanism. Chemical Physics Letters 1995, 244 (5), 456-462.
14. Saarinen, V.; Kreuer, K.; Schuster, M.; Merkle, R.; Maier, J., On the swelling properties of proton conducting membranes for direct methanol fuel cells. Solid State Ionics 2007, 178, 7, 533-537.
15. Z. Wu, C. S. Wu, P. J. Chu, S. Ding*, “Nuclear Magnetic Resonance Micro-Imaging Investigation of Membrane Electrode Assembly: Morphology and Solvent Dynamics”, Magn. Reson. Imag. 2009, 27, 871-879.
16. Scott, K.; Taama, W.; Argyropoulos, P.; Sundmacher, K., The impact of mass transport and methanol crossover on the direct methanol fuel cell. Journal of Power Sources 1999, 83 (1), 204-216.
17. Mauritz, K. A.; Moore, R. B. State of understanding of Nafion. Chem. Rev. 2004, 104, 4536-4586.
18. de Almeida, S. H.; Kawano, Y. THERMAL BEHAVIOR OF NAFION MEMBRANES. J. Therm. Anal. Cal. 1999, 58, 569-577.
19. Zawodzinski, Jr., T. A.; Derouin, C.; Radzinski, S.; Sherman, R. J.; Smith, V. T.; Springer, T. E.; Gottesfeld, S. Water Uptake by and Transport Through Nafion 117 Membranes. J. Electrochem. Soc. 1993, 140, 1041-1047.
20. Kirubakaran, A.; Jain, S.; Nema, R. K. A review on fuel cell technologies and power electronic interface. Renew. Sust. Energ. Rev. 2009, 13, 2430–2440.
21. Wanga, Y.; Chen, K. S.; Mishler, J.; Cho, S. C.; Adroher, X. C. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. APPL. ENERGY. 2011, 88, 981-1007.
22. Grove, W. R. On Voltaic Series and the Combination of Gases by Platinum. Philos. Mag. A Ser. 3 1839, 14, 127-130.
23. Feng, S.; Voth, G. A. Proton Solvation and Transport in Hydrated Nafion. J. Phys. Chem. B 2011, 115, 5903–5912.
24. Knox, C. K.; Voth, G. A. Probing Selected Morphological Models of Hydrated Nafion Using Large-Scale Molecular Dynamics Simulations. J. Phys. Chem. B 2010, 114, 3205–3218.
25. Neves, L. A.; Sebastião, P. J.; Coelhoso, I. M.; Crespo, J. G. Proton MR Relaxometry Study of Nafion Membranes Modified with Ionic Liquid Cations. J. Phys. Chem. B 2011, 115, 8713–8723.
26. Meresi,G.; Wang, Y.; Bandis, A.; Inglefield, P. T.; Jones, A. A.; Wen, W. –Y. Morphology of dry and swollen perfluorosulfonate ionomer by fluorine-19 MAS, NMR and xenon-129 NMR. Polymer, 2001, 42, 6153-6160.
27. Ando, S.; Harris, R. K.; Hirschinger, J.; Reinsberg, S. A.; Scheler, U. Solid-State 19F MAS, 19F CRAMPS, and 19F → 13C CP/MAS NMR Study of an Amorphous Perfluoropolymer. Macromolecules 2001, 34, 66–75.
28. Liu, S. F.; Schmidt-Rohr, K. High-Resolution Solid-State 13C NMR of Fluoropolymers. Macromolecules 2001, 34, 8416-8418.
29. Chen, Q.; Schmidt-Rohr, K. Backbone Dynamics of the Nafion Ionomer Studied by 19F-13C Solid-State NMR. Macromol. Chem. Phys. 2007, 208, 2189-2203.
30. Ye, G.; Janzen, N.; Goward, G. R. Solid-State NMR Study of Two Classic Proton Conducting Polymers:  Nafion and Sulfonated Poly(ether ether ketone)s. Macromolecules 2006, 39, 3283-3290.
31. Chen, Q.; Schmidt-Rohr, K. 19F and 13C NMR Signal Assignment and Analysis in a Perfluorinated Ionomer (Nafion) by Two-Dimensional Solid-State NMR. Macromolecules 2004, 37, 5995-6003.
32. Takasaki, M.; Kimura, K.; Kawaguchi, K.; Abe A.; Katagiri, G. Structural Analysis of a Perfluorosulfonate Ionomer in Solution by 19F and 13C NMR. Macromolecules 2005, 38, 6031-6037.
33. Stenina, I. A.; Sistat, P.; Rebrov, A. I.; Pourcelly, G.; Yaroslavtsev, A. B. Ion mobility in Nafion-117 membranes. Desalination 2004, 170, 49.
34. Jayakody, J. R. P.; Stallworth, P. E.; Mananga, E. S.; Farrington-Zapata, J.; Greenbaum, S. G. High Pressure NMR Study of Water Self-Diffusion in NAFION-117 Membrane. J. Phys. Chem. B 2004, 108, 4260-4262.
35. Every, H. A.; Hickner, M. A.; McGrath, J. E.; Zawodzinski Jr, T. A. An NMR study of methanol diffusion in polymer electrolyte fuel cell membranes. J. Membr. Sci. 2005, 250, 183-188.
36. Volkov, V. I.; Popkov, Y. M.; Timashev, S. F.; Bessarabov, D. G.; Sanderson, R. D.; Twardowski, Z. Self-diffusion of water and fluorine ions in anion-exchange polymeric materials (membranes and resin) as determined by pulsed-field gradient nuclear magnetic resonance spectroscopy. J. Membr. Sci. 2000, 180, 1-13
37. Tsushima, S.; Teranishi, K.; Hirai, S. Magnetic Resonance Imaging of the Water Distribution within a Polymer Electrolyte Membrane in Fuel Cells. Electrochem. Solid-State Lett. 2004, 7, A269-A272.
38. Wu, Z.; Wu, C. S.; Chu, P. P. J.; Ding, S. Nuclear magnetic resonance microimaging investigation of membrane electrode assembly of fuel cells: morphology and solvent dynamics. Magn. Reson. Imaging 2009, 27, 871-878.
39. Kawamura, J.; Hattori, K.; Hongo, T.; Asayama, R.; Kuwata, N.; Hattori, T.; Mizusaki, J. Microscopic states of water and methanol in Nafion membrane observed by NMR micro imaging. Solid State Ionics 2005, 176, 2451-2456.
40. Baker, R. T.; Naji, L.; Lochhead, K.; Chudek, J. A. In situ magnetic resonance imaging of electrically-induced water diffusion in a Nafion ionic polymer film. Chem. Commun. 2003, 8, 962-963.
41. Tsushima, S.; Nanjo, T.; Nishida, K.; Teranishi, K.; Hirai, S. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply. Magn. Reson. Imaging 2005, 23, 255-258.
42. Ghassemzadeh, L.; Marrony, M.; Barrera, R.; Kreuer, K. D.; Maier, J.; Müller, K. Chemical degradation of proton conducting perflurosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy. J. Power Sources 2009, 186, 334–338.
43. C. H. Chia, Z. Wu, C.-H. Wu, R. H. Cheng, S. Ding, “Resolve the Pore Structure and Dynamics of Nafion 117: Application of High Resolution 7Li Solid State Nuclear Magnetic Resonance Spectroscopy”, J. Mat. Chem. 2012, 22, 22440-22446.
44. V. Sabarinathan , Z. Wu , R.-H. Cheng, S. Ding*, Multinuclear Solid State Nuclear Magnetic Resonance Investigation of Water Penetration in Proton Exchange Membrane Nafion-117 by Mechanical Spinning. J. Phys. Chem. B, 2013, 117, 6558-6566.
45. Sørensen, O., James Keeler. Understanding NMR Spectroscopy. Wiley Online Library: 2006.
46. Cavanagh, J.; Fairbrother, W. J.; Palmer, A. G.; Skelton, N. J., Protein NMR Spectroscopy: Principles and Practice. Elsevier Science: 1995.
47. Levitt, M. H., Spin Dynamics: Basics of Nuclear Magnetic Resonance. Wiley: 2008.
48. Vold, R.; Waugh, J.; Klein, M.; Phelps, D., Measurement of spin relaxation in complex systems. J. Chem. Phys.1968, 48 (8), 3831-3832.
49. Meiboom, S.; Gill, D., Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times. Rev Sci Instrum 1958, 29 (8), 688-691.
50. Vold, R.; Waugh, J.; Klein, M.; Phelps, D., Measurement of spin relaxation in complex systems. J. Chem. Phys.1968, 48 (8), 3831-3832.
51. Dixit, S.; Crain, J.; Poon, W.; Finney, J.; Soper, A., Molecular segregation observed in a concentrated alcohol–water solution. Nature 2002, 416 (6883), 829-832.
52. Dougan, L.; Bates, S.; Hargreaves, R.; Fox, J.; Crain, J.; Finney, J.; Reat, V.; Soper, A., Methanol-water solutions: A bi-percolating liquid mixture. The Journal of chemical physics 2004, 121 (13), 6456-6462.
53. Mulder, M.; Smolders, C., On the mechanism of separation of ethanol/water mixtures by pervaporation I. Calculations of concentration profiles. Journal of Membrane Science 1984, 17 (3), 289-307.
54. Corsaro, C.; Maisano, R.; Mallamace, D.; Dugo, G., NMR study of water/methanol solutions as a function of temperature and concentration. Physica A: Statistical Mechanics and its Applications 2013, 392 (4), 596-601.
55. Mikhail, S.; Kimel, W., Densities and Viscosities of 1-Propanol-Water Mixtures. Journal of Chemical and Engineering Data 1963, 8 (3), 323-328.
56. Yang, C.; Ma, P.; Jing, F.; Tang, D., Excess molar volumes, viscosities, and heat capacities for the mixtures of ethylene glycol+ water from 273.15 K to 353.15 K. Journal of Chemical & Engineering Data 2003, 48 (4), 836-840.
57. Rivin, D.; Kendrick, C.; Gibson, P.; Schneider, N., Solubility and transport behavior of water and alcohols in Nafion™. Polymer 2001, 42 (2), 623-635.
58. Mitchell, A.; Wynne-Jones, W., Thermodynamic and other properties of solutions involving hydrogen bonding. Discussions of the Faraday Society 1953, 15, 161-168.
59. Michael Mehring, Volker A. Weberruss, “Objective Oriented Magnetic Resonance”, Spinger-Verlag, 2001.
60. Grant D. M. Chemical Shift Tensors, eMagReson 2007. John Wiley.
61. Rankothge, M.; Moran, G.; Hook, J.; Van Gorkom, L., Orientation effects in the deuterium NMR spectroscopy of perfluorinated ionomer membranes. Solid State Ionics 1994, 67 (3-4), 241-248.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code