Responsive image
博碩士論文 etd-0018117-174238 詳細資訊
Title page for etd-0018117-174238
論文名稱
Title
自旋頓挫態系統Cu2OSeO3, Cu2OCl2和Cu3Bi(SeO3)2O2Cl之新穎特性研究
Novel properties in spin-frustrated systems Cu2OSeO3, Cu2OCl2, and Cu3Bi(SeO3)2O2Cl
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-01-16
繳交日期
Date of Submission
2017-01-19
關鍵字
Keywords
焦綠石、自旋翻轉、籠紋、Skyrmion態、姜-泰勒效應、分裂、多鐵
spin-flip, multiferroics, Jahn-Teller effect, split, Skyrmion phase, Kagome, pyrochlore
統計
Statistics
本論文已被瀏覽 5809 次,被下載 498
The thesis/dissertation has been browsed 5809 times, has been downloaded 498 times.
中文摘要
在本論文中,我們探討三種幾何自旋頓挫態系統的新穎特性,分別是Cu2OSeO3共享角四面體、Cu2OCl2焦綠石結構及Cu3Bi(SeO3)2O2Cl2籠紋晶格。

新穎材料Cu2OSeO3在特定溫度及磁場下,其磁結構呈現渦流狀的Skyrmion態,透過外加物理壓力(壓縮)、化學壓力(膨脹)與摻雜磁性鎳元素和非磁性鋅元素用以探討對Skyrmion的相變化及背後物理機制。藉由交流磁化率的測量中發現Cu2OSeO3在摻雜非磁性鋅元素下,其Skyrmion態分裂成兩個Skyrmion態,從摻雜磁性鎳元素的系統中,鎳元素佔據銅(I)的位置並誘發姜-泰勒效應,因而使磁場-溫度相圖中Skyrmion態的存活區塊變巨大,在施加高壓的系統中發現Skyrmion態的區塊隨著外加物理壓力下變大,這個現象可歸咎於自旋-軌道耦合與鐵磁交換作用力的比值增大。Cu2OSeO3系統內自旋-軌道耦合與鐵磁交換作用力的比值隨著碲元素取代下變小,導致Skyrmion態漸漸消失。

利用變溫變磁場磁化強度、比熱、介電及極化率的量測中,Cu2OCl2焦綠石晶格及Cu3Bi(SeO3)2O2Cl2籠紋晶格皆被觀測到有第二類多鐵特性,Cu2OCl2多鐵特性的機制與反對稱交換有關,另外新多鐵材料Cu3Bi(SeO3)2O2Cl2的機制為在外加磁場下誘發自旋翻轉,因而破壞bc平面的磁二重對稱,最後在c方向產生極化。
Abstract
The purpose of this dissertation is to study three geometrical spin-frustrated systems, such as the corner-sharing of tetrahedron in Cu2OSeO3, pyrochlore structure in Cu2OCl2, and Kagome lattice in Cu3Bi(SeO3)2O2Cl.

Novel skyrmion phase in Cu2OSeO3 is a remarkable characteristic as a vortex-like spin configuration in specific magnetic field and temperature region. Using the effects of compression pressure, chemical expansion, non-magnetic (Zn) and magnetic (Ni) element doping on Cu2OSeO3, outstanding and interesting research findings were investigated. The skyrmion phase region becomes split upon Zn doping concentration. Large enhancement of skyrmion area upon Ni-doped could be ascribed to the magnetic anisotropy of the Jahn-Teller active Ni2+ ion in Cu(I) site. Under the external pressure, the skyrmion zone is enlarged owing to the enhancement of strengths of competing Dzyaloshinsky–Moriya (DM) and Heisenberg exchange (J) interactions. Skyrmion zone is gradually suppressed with Te doping, which could be related to the decrease of D/J parameter.

Temperature and magnetic field dependent magnetization, specific heat, dielectric, and polarization properties in pyrochlore Cu2OCl2 and Kagome single crystal Cu3Bi(SeO3)2O2Cl were established as new type-II multiferroics. The mechanism of multiferroic behavior in Cu2OCl2 is related to the inverse Dzyaloshinskii–Moriya (DM) interaction. Furthermore, the key mechanism of the anisotropic spin-flip induced multiferroicity in Cu3Bi(SeO3)2O2Cl can be ascribed to the breaking of magnetic two-fold symmetry in the bc plance above Hc.
目次 Table of Contents
摘要 i
Abstract ii
Content iii
List of figures v
List of tables xiv
Chapter 1: Introduction 1
1.1: Skyrmion 1
1.1.1: Skyrmion research in B20 systems 1
1.2: Multiferroics 4
1.3: Motivations 7
Chapter 2: Splitting of skyrmion phase in Zn doped Cu2OSeO3 10
2.1: Sample synthesis and characterization in Zn doped Cu2OSeO3 10
2.2: Magnetic properties and H-T phase diagram in Zn doped Cu2OSeO3 12
Chapter 3: Enhancement of skyrmion stability in Ni doped Cu2OSeO3 24
3.1: Sample synthesis and characterization in Ni doped Cu2OSeO3 24
3.2: Magnetic properties and H-T phase diagram in Ni doped Cu2OSeO3 31
3.3: Electrical properties 35
Chapter 4: Pressure effects on the skyrmion phase in Cu2OSeO3 38
4.1: Sample synthesis and characterization in Cu2OSe1-xTexO3 38
4.2: Magnetic properties and H-T phase diagram under high pressure in Cu2OSeO3 40
4.3: Magnetic properties and H-T phase diagram in Cu2OSe1-xTexO3 43
Chapter 5: Multiferroics in spin frustrated system Cu2OCl2 49
5.1: Sample synthesis and characterization in Cu2OCl2 49
5.2: Magnetic properties 49
5.3: Electrical properties 50
5.4: Temperature dependent synchrotron X-ray diffractions 51
Chapter 6: Anisotropic spin-flip induced multiferroic behavior in Cu3Bi(SeO3)2O2Cl 60
6.1: Magnetic properties 60
6.2: Electrical properties 74
Chapter 7: Anisotropic pressure effects on the Kagome Cu3Bi(SeO3)2O2Cl 71
7.1: Sample synthesis and characterization in Cu3Bi(Se1-xTexO3)2O2Cl 72
7.2: Magnetic properties 75
Chapter 8: Conclusions 82
References 93
List of publications 108
參考文獻 References
[1] A. Fert, V. Cros, J. Sampaio, Skyrmions on the track, Nature Nanotechnol, 8 (2013) 152-156.
[2] J. Ding, X. Yang, T. Zhu, Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack, Journal of Physics D: Applied Physics, 48 (2015) 115004.
[3] G. Lawes, M. Kenzelmann, N. Rogado, K. H. Kim, G. A. Jorge, R. J. Cava, A. Aharony, O. Entin-Wohlman, A. B. Harris, T. Yildirim, Q. Z. Huang, S. Park, C. Broholm, A. P. Ramirez, Competing magnetic phases on a kagome staircase, Physical Review Letters, 93 (2004) 247201.
[4] K. -y. Ho, T. R. Kirkpatrick, Y. Sang, D. Belitz, Ordered phases of itinerant Dzyaloshinsky-Moriya magnets and their electronic properties, Physical Review B, 82 (2010) 134427.
[5] U. K. Rößler, A. A. Leonov, A. N. Bogdanov, Chiral Skyrmionic matter in non-centrosymmetric magnets, Journal of Physics: Conference Series, 303 (2011) 012105.
[6] T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Physical Review, 120 (1960) 91-98.
[7] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Skyrmion lattice in a chiral magnet, Science, 323 (2009) 915-919.
[8] S. Seki, X. Z. Yu, S. Ishiwata, Y. Tokura, Observation of skyrmions in a multiferroic material, Science, 336 (2012) 198-201.
[9] W. Münzer, A. Neubauer, T. Adams, S. Mühlbauer, C. Franz, F. Jonietz, R. Georgii, P. Böni, B. Pedersen, M. Schmidt, A. Rosch, C. Pfleiderer, Skyrmion lattice in the doped semiconductorFe1−xCoxSi, Physical Review B, 81 (2010) 041203(R).
[10] J. S. White, K. Prsa, P. Huang, A. A. Omrani, I. Zivkovic, M. Bartkowiak, H. Berger, A. Magrez, J. L. Gavilano, G. Nagy, J. Zang, H. M. Ronnow, Electric-field-induced Skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3, Physical Review Letters, 113 (2014) 107203.
[11] I. Živković, D. Pajić, T. Ivek, H. Berger, Two-step transition in a magnetoelectric ferrimagnet Cu2OSeO3, Physical Review B, 85 (2012) 224402.
[12] M. Belesi, I. Rousochatzakis, H. C. Wu, H. Berger, I. V. Shvets, F. Mila, J. P. Ansermet, Ferrimagnetism of the magnetoelectric compound Cu2OSeO3 probed by Se-77 NMR, Physical Review B, 82 (2010) 094422.
[13] S. M. Stishov, A. E. Petrova, S. Khasanov, G. K. Panova, A. A. Shikov, J. C. Lashley, D. Wu, T. A. Lograsso, Magnetic phase transition in the itinerant helimagnet MnSi: Thermodynamic and transport properties, Physical Review B, 76 (2007) 052405.
[14] K. Shibata, X. Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, Y. Tokura, Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling, Nature Nanotechnol, 8 (2013) 723-728.
[15] K. Shibata, J. Iwasaki, N. Kanazawa, S. AizawS, T. Tanigaki, M. Shirai, T. Nakajima, M. Kubota, M. Kawasaki, H. S. Park, D. Shindo, N. Nagaosa, Y. Tokura, Large anisotropic deformation of skyrmions in strained crystal, Nature Nanotechnology 10 (2015) 589-592.
[16] H. C. Wu, T. Y. Wei, K. D. Chandrasekhar, T. Y. Chen, H. Berger, H. D. Yang, Unexpected observation of splitting of skyrmion phase in Zn doped Cu2OSeO3, Scientific Report, 5 (2015) 13579.
[17] V. A. Chizhikov, V. E. Dmitrienko, Microscopic description of twisted magnet Cu2OSeO3, Journal of Magnetism and Magnetic Materials, 382 (2015) 142-151.
[18] M. Mochizuki, S. Seki, Dynamical magnetoelectric phenomena of multiferroic skyrmions, Journal of Physics: Condensed Matter, 27 (2015) 503001.
[19] J. H. Yang, Z. L. Li, X. Z. Lu, M. H. Whangbo, S. H. Wei, X. G. Gong, H. J. Xiang, Strong Dzyaloshinskii-Moriya interaction and origin of ferroelectricity in Cu2OSeO3, Physical Review Letters, 109 (2012) 107203.
[20] S. -W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nature Materials, 6 (2007) 13-20.
[21] W. Eerenstein, N. D. Mathur, J. F. Scott, Multiferroic and magnetoelectric materials, Nature, 442 (2006) 759-765.
[22] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization, Nature, 426 (2003) 55-58.
[23] M. Pregelj, A. Zorko, O. Zaharko, P. Jeglič, Z. Kutnjak, Z. Jagličić, S. Jazbec, H. Luetkens, A. D. Hillier, H. Berger, D. Arčon, Physical Review B, 88(2013) 224421.
[24] T. Besara, E. S. Choi, K. Y. Choi, P. L. Kuhns, A. P. Reyes, P. Lemmens, H. Berger, N. S. Dalal, Spin dynamics and magnetoelectric properties of the coupled-spin tetrahedral compound Cu2Te2O5Cl2, Physical Review B, 90 (2014) 054418.
[25] H. Murakawa, Y. Onose, S. Miyahara, N. Furukawa, Y. Tokura, Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2CoGe2O7, Physical Review Letters, 105 (2010) 137202.
[26] K. Yamauchi, P. Barone, S. Picozzi, Magnetically driven ferroelectric atomic displacements in orthorhombic YMnO3, Physical Review B, 84 (2011) 054440.
[27] S. Nakatsuji, Y. Machida, Y. Maeno, T. Tayama, T. Sakakibara, J. van Duijn, L. Balicas, J. N. Millican, R. T. Macaluso, Julia Y. Chan, Metallic spin-liquid behavior of the geometrically frustrated kondo lattice Pr2Ir2O7, Physical Review Letters, 96 (2006) 087204.
[28] K. H. Miller, P. W. Stephens, C. Martin, E. Constable, R. A. Lewis, H. Berger, G. L. Carr, D. B. Tanner, Braiding statistics approach to symmetry-protected topological phases, Physical Review B, 86 (2012) 147104.
[29] S. T. Bramwell, M. J. P. Gingras, Spin ice state in frustrated magnetic pyrochlore materials, Science, 294 (2001) 1495-1501.
[30] C. P. Sun, C. C. Lin, J. L. Her, C. J. Ho, S. Taran, H. Berger, B. K. Chaudhuri, H. D. Yang, Field-dependent dielectric and magnetic properties in multiferroic CdCr2S4, Physical Review B, 79 (2009) 214116.
[31] M. Pregelj, O. Zaharko, A. Günther, A. Loidl, V. Tsurkan, S. Guerrero, Magnetic ground state and two-dimensional behavior in pseudo-kagome layered system Cu3Bi(SeO3)2O2Br, Physical Review B, 86 (2012) 144409.
[32] B. Canals, C. Lacroix, Pyrochlore Antiferromagnet: A Three-Dimensional Quantum Spin Liquid, Physical Review Letters, 80 (1998) 2933.
[33] H. Martinho, N. O. Moreno, J. A. Sanjurjo, C. Rettori, A. J. García-Adeva, D. L. Huber, S. B. Oseroff, W. Ratcliff, II, S.-W. Cheong, P. G. Pagliuso, J. L. Sarrao, G. B. Martins, Magnetic properties of the frustrated antiferromagnetic spinel ZnCr2O4 and the spin-glass Zn1−xCdxCr2O4 (x = 0.05,0.10), Physical Review B, 64 (2001) 024408.
[34] S. T. Bramwell, M. J. P. Gingras, Spin ice state in frustrated magnetic pyrochlore materials, Science, 294 (2001) 1495-1501.
[35] X. W. Dong, K. F. Wang, S. J. Luo, J. G. Wan, J. –M. Liu, Coexistence of magnetic and ferroelectric behaviors of pyrochlore Ho2Ti2O7, Journal of Applied Physics, 106 (2009) 104101.
[36] Y. Shimikawa, Y. Kubo, T. Manako, Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure, Nature, 379 (1996) 53-55.
[37] M. Hanawa, Y. Muraoka, T. Tayama, T. Sakakibara, J. Yamaura, Z. Hiroi, Superconductivity at 1 K in Cd2Re2O7, Physical Review Letters, 87 (2001) 187001.
[38] M. Nishiyama, A. Oyamada, T. Itou, S. Maegawa, H. Okabe, J. Akimitsu, NMR study of pyrochlore lattice antiferromagnet, melanothallite Cu2OCl2 Journal of Physics: Conference Series, 320 (2011) 012030.
[39] H. Okabe, K. Suzuki, K. Kawashima, T. Muranaka, J. Akimitsu, New pyrochlore-like compound Cu2OCl2 with S = 1/2, Journal of the Physical Society of Japan, 75 (2006) 123705.
[40] S. Seki, T. Kurumaji, S. Ishiwata, H. Matsui, H. Murakawa, Y. Tokunaga, Y. Kaneko, T. Hasegawa, Y. Tokura, Superconductivity in the iron selenide KxFe2Se2 (0 ≤ x ≤ 1.0), Physical Review B, 82 (2010) 180520(R).
[41] L. Zhao, T. L. Hung, C. C. Li, Y. Y. Chen, M. K. Wu, R. K. Kremer, M. G. Banks, A. Simon, M. H. Whangbo, C. Lee, J. S. Kim, I. Kim, K. H. Kim, CuBr2 – A new multiferroic material with high critical temperature, Advanced Materials, 24 (2012) 2469-2473.
[42] V. Gnezdilov, Yu. Pashkevich, V. Kurnosov, P. Lemmens, E. Kuznetsova, P. Berdonosov, V. Dolgikh, K. Zakharov, A. Vasiliev, Longitudinal magnon, inversion breaking and magnetic instabilities in the pseudo-Kagome francisites Cu3Bi(SeO3)2O2X with X=Br, Cl, arXiv:1604.04249
[43] P. Millet, B. Bastide, V. Pashchenko, S. Gnatchenko, V. Gapon, Y. Ksarid, A. Stepanovd, Syntheses, crystal structures and magneticproperties of francisite compounds Cu3Bi(SeO3)2O2X (X = Cl, Br and I), Journal of Materials Chemistry, 11 (2001) 1152.
[44] M. Pregelj, O. Zaharko, A. Günther, A. Loidl, V. Tsurkan, S. Guerrero, Magnetic ground state and two-dimensional behavior in pseudo-kagome layered system Cu3Bi(SeO3)2O2Br, Physical Review B, 86 (2012) 144409.
[45] M. K. Wu, Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Physical Review Letters, 58 (1987) 908-910.
[46] H. A. Mook, P. Dai, F. Doğan, Charge and Spin Structure in YBa2Cu3O6.35, Physical Review Letters, 88 (2002) 097004.
[47] M. Matsuda, Electronic phase separation in lightly doped La2−xSrxCuO4, Physical Review B, 65 (2002) 134515.
[48] M. A. Kastner, R. J. Birgeneau, G. Shirane, Y. Endoh, Magnetic, transport, and optical properties of monolayer copper oxides, Reviews of Modern Physics, 70 (1998) 897-928.
[49] T. Kimura, Y. Sekio, H. Nakamura, T. Siegrist, A. P. Ramirez, Cupric oxide as an induced-multiferroic with high-TC, Nature Materials, 7 (2008) 291-294.
[50] G. Xiao, High-temperature superconductivity in tetragonal perovskite structures: Is oxygen-vacancy order important?, Physical Review Letters, 60 (1988) 1446-1449.
[51] J. -W.G. Bos, C. V. Colin, T. T. M. Palstra, Magnetoelectric coupling in the cubic ferrimagnet Cu2OSeO3, Physical Review B, 78 (2008) 094416.
[52] M. C. Langner, Coupled Skyrmion Sublattices in Cu2OSeO3, Physical Review Letters, 112 (2014) 167202.
[53] C. L. Huang, K. F. Tseng, C. C. Chou, S. Mukherjee, J. L. Her, Y. H. Matsuda, K. Kindo, H. Berger, H. D. Yang, Observation of a second metastable spin-ordered state in ferrimagnet Cu2OSeO3, Physical Review B, 83 (2011) 052402.
[54] V. A. Sidorov, A. E. Petrova, P. S. Berdonosov, V. A. Dolgikh, S. M. Stishov, Comparative study of helimagnets MnSi and Cu2OSeO3 at high pressures, Physical Review B, 89 (2014) 100403.
[55] Z. Wang, N. Qureshi, S. Yasin, A. Mukhin, E. Ressouche, S. Zherlitsyn, Y. Skourski, J. Geshev, V. Ivanov, M. Gospodinov, V. Skumryev, Magnetoelectric effect and phase transitions in CuO in external magnetic fields, Nature Communications, 7 (2016) 10295.
[56] S. H. Chun, Y. S. Chai, B.-G. Jeon, H. J. Kim, Y. S. Oh, I. Kim, H. Kim, B. J. Jeon, S. Y. Haam, J.-Y. Park, S. H. Lee, J.-H. Chung, J.-H. Park, K. H. Kim, Electric field control of nonvolatile four-state magnetization at room temperature, Physical Review Letters, 108 (2012) 177201.
[57] Y. Tokunaga, S. Iguchi, T. Arima, Y. Tokura, Magnetic-field-induced ferroelectric state in DyFeO3, Physical Review Letters, 101 (2008) 097205.
[58] J. Hwang, E. S. Choi, H. D. Zhou, J. Lu, P. Schlottmann, Magnetoelectric effect in NdCrTiO5, Physical Review B, 85 (2012) 024415.
[59] B. K. Teo, Exafs: Basic Principles And Data Analysis, (1986).
[60] I. Zivkovic, J. S. White, H. M. Ronnow, K. Prsa, H. Berger, Critical scaling in the cubic helimagnet Cu2OSeO3, Physical Review B, 89 (2014) 060401(R).
[61] A. Bauer, C. Pfleiderer, Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility, Physical Review B, 85 (2012) 214418.
[62] T. Adams, A. Chacon, M. Wagner, A. Bauer, G. Brandl, B. Pedersen, H. Berger, P. Lemmens, C. Pfleiderer, Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3, Physical Review Letters, 108 (2012) 237204.
[63] A. Bauer, Quantum phase transitions in single-crystal Mn1−xFexSi and Mn1−xCoxSi: Crystal growth, magnetization, ac susceptibility, and specific heat, Physical Review B, 82 (2010) 064404.
[64] J. B. Goodenough, Magnetism And The Chemical Bond, (1963).
[65] V. P. Gnezdilov, Magnetoelectricity in the ferrimagnetic Cu2OSeO3: symmetry analysis and Raman scattering study, Low Temperature Physics, 36 (2010) 550-557.
[66] O. Janson, The quantum nature of skyrmions and half-skyrmions in Cu2OSeO3, Nature Communications, 5 (2014) 5376.
[67] K. E. R. Marriott, L. Bhaskaran, C. Wilson, M. Medarde, S. T. Ochsenbein, S. Hill, M. Murrie, Pushing the limits of magnetic anisotropy in trigonal bipyramidal Ni (ii), Chemical Science, 6 (2015) 6823-6828.
[68] M. Gruden-Pavlovic, M. Peric, M. Zlatar, P. Garcia-Fernandez, Theoretical study of the magnetic anisotropy and magnetic tunnelling in mononuclear Ni (ii) complexes with potential molecular magnet behavior, Chemical Science, 5 (2014) 1453-1462.
[69] I. B. Bersuker, Pseudo-Jahn–Teller effect—A two-state paradigm in formation, deformation, and transformation of molecular systems and solids, Chemical Reviews, 113 (2013) 1351-1390.
[70] S. X. Huang, C. L. Chien, Extended skyrmion phase in epitaxial Fe (111) thin films, Physical Review Letters, 108 (2012) 267201.
[71] P. Chu, Real-space anisotropic dielectric response in a multiferroic skyrmion lattice, Scientific Report, 5 (2015) 8318.
[72] S. Seki, S. Ishiwata, Y. Tokura, Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3, Physical Review B, 86 (2012) 060403.
[73] C. Jia, S. Onoda, N. Nagaosa, J. H. Han, Microscopic theory of spin-polarization coupling in multiferroic transition metal oxides, Physical Review B, 76 (2007) 144424.
[74] H. C. Wu, K. D. Chandrasekhar, T. Y. Wei, K. J. Hsieh, T. Y. Chen, H. Berger, H. D. Yang, Physical pressure and chemical expansion effects on the skyrmion phase in Cu2OSeO3, Journal of Physics D: Applied Physics, 48 (2015) 475001.
[75] M. I. Kobets, K. G. Dergachev, E. N. Khatsko, A. I. Rykova, P. Lemmens, D. Wulferding, H. Berger, Microwave absorption in the frustrated ferrimagnet Cu2OSeO3, Low Temperature Physics, 36 (2010) 176.
[76] M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Böni, C. Pfleiderer, Fluctuation-induced first-order phase transition in Dzyaloshinskii-Moriya helimagnets, Physical Review B, 87 (2013).
[77] H. Okabe, K. Suzuki, K. Kawashima, T. Muranaka, J. Akimitsu, New Pyrochlore-like compound Cu2OCl2 with S=1/2, Journal of the Physical Society of Japan, 75 (2006) 123705.
[78] M. Elhajal, B. Canals, R. Sunyer, C. Lacroix, Ordering in the pyrochlore antiferromagnet due to Dzyaloshinsky-Moriya interactions, Physical Review B, 71 (2005) 094420.
[79] M. Nishiyama, A. Oyamada, T. Itou, S. Maegawa, H. Okabe, J. Akimitsu, NMR study of pyrochlore lattice antiferromagnet, melanothallite Cu2OCl2, Journal of Physics: Conference Series, 320 (2011) 012030.
[80] K. H. Miller, P. W. Stephens, C. Martin, E. Constable, R. A. Lewis, H. Berger, G. L. Carr, D. B. Tanner, Infrared phonon anomaly and magnetic excitations in single-crystal Cu3Bi(SeO3)2O2Cl, Physical Review B, 86 (2012) 147104.
[81] M. Pregelj, O. Zaharko, A. Günther, A. Loidl, V. Tsurkan, S. Guerrero, Magnetic ground state and two-dimensional behavior in pseudo-kagome layered system Cu3Bi(SeO3)2O2Br, Physical Review B, 86 (2012) 144409.
[82] A. Bauer, M. Garst, C. Pfleiderer, Specific heat of the skyrmion lattice phase and field-induced tricritical point in MnSi, Physical Review Letters, 110 (2013) 177207.
[83] V. Hardy, A. Wahl, C. Martin, Ch. Simon, Low-temperature specific heat in Pr0.63Ca0.37MnO3: Phase separation and metamagnetic transition, Physical Review B, 63 (2001) 224403.
[84] J. Krishna Murthy, K. D. Chandrasekhar, H. C. Wu, H. D. Yang, J. Y. Lin, A. Venimadhav, Metamagnetic behaviour and effect of field cooling on sharp magnetization jumps in multiferroic Y2CoMnO6, Europhysics Letters, 108 (2014) 27013.
[85] D. S. Rana, S. K. Malik, Magnetic avalanchelike behavior in the disordered manganite (Eu0.4La0.1)(Sr0.4Ca0.1)MnO3, Physical Review B, 74 (2006) 052407.
[86] Y. Wang, G. L. Pascut, B. G, T. A. Tyson, K. Haule, V. Kiryukhin, S.-W. Cheong, Unveiling hidden ferrimagnetism and giant magnetoelectricity in polar magnet Fe2Mo3O8, Scientific Report, 5 (2015) 12268.
[87] I. Rousochatzakis, J. Richter, R. Zinke, A. A. Tsirlin, Frustration and Dzyaloshinsky-Moriya anisotropy in the kagome francisites, Physical Review B, 91 (2015) 024416.
[88] H. C. Wu et al, Anisotropic spin-flip induced multiferroic behavior in kagome Cu3Bi(SeO3)2O2Cl, unpublished.
[89] K. V. Zakharov, E. A. Zvereva, P. S. Berdonosov, E. S. Kuznetsova, V. A. Dolgikh, L. Clark, C. Black, P. Lightfoot, W. Kockelmann, Z. V. Pchelkina, S. V. Streltsov, O. S. Volkova, A. N. Vasiliev, Thermodynamic properties, electron spin resonance, and underlying spin model in Cu3Y(SeO3)2O2Cl, Physical Review B, 90 (2014) 214417.
[90] K. V. Zakharov, E. A. Zvereva, E. S. Kuznetsova, P. S. Berdonosov, V. A. Dolgikh, M. M. Markina, A. V. Olenev, A. A. Shakin, O. S. Volkova, A. N. Vasiliev, Two new lanthanide members of francisite family Cu3Ln(SeO3)2O2Cl (Ln = Eu, Lu), Journal of alloys and compounds, 685 (2016) 442-447.
[91] M. M. Markina, K. V. Zakharov, E. A. Zvereva, R. S. Denisov, P. S. Berdonosov, V. A. Dolgikh, E. S. Kuznetsova, A. V. Olenev, A. N. Vasiliev, Static and dynamic magnetic properties of two synthetic francisites Cu3La(SeO3)2O2X (X = Br and Cl), Physics and Chemistry of Minerals, (2016) 1-9.
[92] K. V. Zakharov, E. A. Zvereva, M. M. Markina, M. I. Stratan, E. S. Kuznetsova, S. F. Dunaev, P. S. Berdonosov, V. A. Dolgikh, A. V. Olenev, S. A. Klimin, L. S. Mazaev, M. A. Kashchenko, M. A. Ahmed, A. Banerjee, S. Bandyopadhyay, A. Iqbal, B. Rahaman, T. Saha-Dasgupta, A. N. Vasiliev, Magnetic, resonance, and optical properties of Cu3Sm(SeO3)2O2Cl: A rare-earth francisite compound, Physical Review B, 94 (2016) 054401.
[93] P. Millet, B. Bastide, V. Pashchenko, S. Gnatchenko, V. Gapon, Y. Ksari, A. Stepanov, Syntheses, crystal structures and magnetic properties of francisite compounds Cu3Bi(SeO3)2O2X (X = Cl, Br and I), Journal of Materials Chemistry, 11 (2001) 1152-1157.
[94] R. Becker, M. Johnsson, Crystal structure of Cu3Bi(TeO3)2O2Cl: a Kagome lattice type compound, Solid State Sciences, 7 (2005) 375-380.
[95] W. Geertsma and D. Khomskii, Influence of side groups on 90o superexchange: A modification of the Goodenough-Kanamori-Anderson rules, Physical Review B, 54 (1996) 3011-3014.
[96] J. B. Goodenough, Magnetism and the chemical bond, Interscience Publishers, (1963).
[97] S. A. Nikolaev, V. V. Mazurenko, A. A. Tsirlin, V. G. Mazurenko, First-principles study of the magnetic ground state and magnetization process of the kagome francisitesCu3Bi(SeO3)2O2X(X=Cl,Br), Physical Review B, 94 (2016) 144412.
[98] Y. Tokunaga, X. Z. Yu, J. S. White, H. M. Rønnow, D. Morikawa, Y. Taguchi, Y. Tokura, Altmetric: A new class of chiral materials hosting magnetic skyrmions beyond room temperature, Nature Communications, 6 (2015) 7638.
[99] I. Kézsmárki, S. Bordács, P. Milde, E. Neuber, L. M. Eng, J. S. White, H. M. Rønnow, C. D. Dewhurst, M. Mochizuki, K. Yanai, H. Nakamura, D. Ehlers, V. Tsurkan, A. Loidl, Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8, Nature Materials, 14 (2015) 1116–1122.
[100] J. S. White, I. Levatić, A. A. Omrani, N. Egetenmeyer, K. Prša, I. Živković, J. L. Gavilano, J. Kohlbrecher, M. Bartkowiak, H. Berger, H. M. Rønnow, Electric field control of the skyrmion lattice in Cu2OSeO3, Journal of Physics: Condensed Matter, 24 (2012) 43.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code